
FIThitrAo32 123 STANFORD UNIV CALIF EPT OF COMPUTER SCIENCE FIG 9/2
THi LANLI ULVELOPMENT OF PROGRAMMING LANGUAGES.(LJ)
AUt, 76 D c. KNUTH. L T PARuU N000V4 76—C—0330

UNCLASSIFIED STA 1rCS 7b—5b2 NL

I . p ~~______
_ r!ir

_ _ _ _ _ _ _ _ilk: ‘U
irr

-

~~~~ 
~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~
—‘

~~~

THE EARLY DEVELOPMENT OF PROGRAMM ING LANGUAGES

by

Donald E. Knuth
Lu is Trabb Pardo

STAN-C 5-76-562
AUGUST 1976 -~~~

/ I

COM PUTER SC JENCE DEPA RTMENT
School of Human ities and Sciences

STANFOR D UN IVERSITY

0cj~v J UNj 0~,

~~ _________________

fTh1b1RB11~~ON3~ATI~IQNT A I
~~ Apprc v.d for pub~c rsIs~~~

~~~4NIw) ‘
~~~ L ~~~~C 

- . - - .



The Early Development of Prograxruning Lan guages

by Donald E. Knuth and Luis Trabb Pardo

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

This paper surveys the evolution of ~~igh level’~ progralmning languages

during the first decade of computer ~rograimning activity. We discuss the

contribution s of Zuse (~ Plan kalkiil~~ 1945), Goldstine/von Neumann (‘4low

Diagrams ’~ 1946), Curry (‘~Composition’~ 1948), Mauchly et al. (‘~ }iort Code’~
1950), Barks (~ Intermediat e PL~~ 1950), Rutishauser (1951), Bbhm (195 1),

Glennie (~ AuT0C0DE~~ 1952), Hopper et al. (~ A-2~~ 1953), Laning/ Zierler

(1953), Backus et al. (~~ 0RTRAN”~ 1954-1957), Brook~r (~ Mark I Autocode” ,

1954), Karn~min/Liubimskii (“
‘rrrr-2”, 1954), Ershov (~11rr”, 1955), Grems/Porter

(‘~ ACAIC’~, 1955), Elsworth et al. (“~ompiler 2~~ 1955) ,  Blum (~ kDES” , 195r ),

Pen is et al. (“IT” , 1956), Kat z et al. (‘~~ TH-MATIC”, 1956-1958),
Hopper et al. (~vFLow_MATIc T? , 1956_ 1958), Bauer/Swnelson (1956-1958) .
The principal features of each contribution are illustrated; and for

purposes of comparison, a particular fixed algorithm has been encoded

(a s far as possible) in each of the languages . This research is based

primarily on unpublished source materials, and the authors hope that they

have been able to compile a fairly conrplete picture of the early

developments in this area.
This article was commissioned by the Encyclopedia of Computer Science

and Techn olo~~r, ed. by Jack Beizer, Albert G. Holzman , and Allen Kent ,

and it is scheduled to appear in vol. 6 or vol. 7 of that encyclopedia

daring 1977 .

The preparation of this paper has been supported in part by National
Science Foundation grant MCS 72-03752 A03, by the Office of Naval Research
contract N00014-76-C-0330, an’~~~y IBM Corporation. Reproduction in ~thole
or In part is permitted for any purpose of the United States Government.1



- —~~~-~~~~~~~~ “ ‘ ~~~~ ________

The Early Development of Progranuning Languages

It is interesting and instructive to stud~T the history of a subject

not only because it helps us to understand how the important ideas were
born -- and to see how the “human element” entered into each development - -

L
but also because it helps us to appreciate the amount of progress that

has been made. This is especially striking in the case of programming

languages, a subject which has long been undervalued by computer scientists .

After learning a high-level language, a person often tends to think mostly

of improvements he or she would like to see (since all languages can be

improved), and it is very easy to underestimate the difficulty of creating

that language in the first place. The real depth of this subject can

only be properly perceived when we realize how long it took to develop

the important concepts which we now regard as self evident. These ideas

were by no means obvious a priori, and many years of work by brilliant

and dedicated people were necessary before our current state of knowledge

was reached.

The goal of this paper is to give an adequate account of the early

riistory of “high level” programming lang~iages, covering roughly the first

decade of their development. Our story will take us up to 1957, when the

practical importance of algebraic compilers was first being demonstrated,

ar~ when computers were just beginning to be available in large numbers .

We will see how people’s fundamental conceptions of algorithms and of the

progra~ ning process evolved during the years -- not always in a forward

direction -- culminating in languages such as FORTRAN I. The best lang iages

we shall encounter are, of course, very primitive by today ’s standards, but

they were good enough to touch off an explosive growth in language

development; the ensuing decade of intense activity has been detailed in

Jean Sammet ’s 785-page book [ s A  69] . We shall be concerned with the more

relaxed atmosph’~re of the “pre-Babel” days, when people who worked with

computers foresaw the need for important aids to programming that did not

yet exist. In many cases these developments were so far ahead. of their
time that they remained unpublished, and they are still largely unknown

today.

2

-



...~ rc . O~~~~~~~~~~~~~~~~ ? ’ ’ ~ - rn.-—~~--,- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~ _ ..__, .. -nw’~. ,,., ~,,,. ,. ,..

Altogether we shall be considering about 20 different languages, and

it follows that we will have neither the space nor the time to characterize

any one of them completely; besides, it would be rather boring to recite

so many technical rules. The best way to grasp the spirit of a programming

language is to read example programs, so we shall adopt the following

strate~ ,r : A certain fixed algorithm -- which we shall call t~~ “TPK
*1

a.lgoritlmi” for want of a better name —1 -- will be expressed as a program in
each language we discuss. Informal explanations of thi s program should

then suffice to capture the essence of the corresponding language,

although the TPK algorithm will of course not exhaust that language ’ s

capabilities; once we have understood the TPK program, we will be able

to discuss the most important language features it does not reveal.

Note that the same algorithm will be expressed ~n each langu age,

in order to provide a simple means of comparison. A serious attenij~
has been made to write each program in the style originally used, by

author of the corresponding language; and if co~ nent~ appear n~’xt o the

program text, they att empt to match the terminolo~~’ i .~ed at ~hat imp :

by the original authors. Our treatment will therefore be ~~n” J.ing

like “a recital of Chopsticks as it would have been p~.ayed by Bach,

Beethoven, Brahms, and Brubeck .” The resulting programs are rot tru.i~’
authentic excerpts from the historic record, but they will serve a~
fairly close replicas; the interested reader can pursue each language

further by consulting the bibliographic references to be given.
The exemplary TPK algorithm which we shall be using so frequently

can be written as follows in a dialect of Algol 60.

1 TPK: begin integer i; real y; real array ato:lo];
~~~~~~~~~~ ~

-
~~~~~~~~~ — Iris

2 real procedure f ( t) ; real t; value t; o~c ~~, ~~~ ~1

3 f sqrt (abs( t ) )  + 5 x t t 3; VI*~HOUNCEo
— JUSTI d CA1 ION
4 foni O ,~~~~~l until lO do read(a[i});

5 for i 10 step -l until 0 do
begin y f(a[ i i) ;  - 

~iSTNrB vTI(th/ *VAiU SI j~,y 

~~~~~~~1. — . -

7 if y > 400 th en wnite(i , ”TOO LARGE”) ‘

~~~~ ~~~ ~~ ~~

‘

~
-‘

8 else write(i ,y ) ;

10 end.

~~Cf. “Grimm’s Las?’ in comparative linguistics, and/or the word “t~~ ical ” ,
and/or the names of the authors of this article.

:5

_ _  —~~~~~~~~~~



__________________________________________________________________________________ 
-

(Actually Algol 60 is not one of the languages we shall be discussing,

since it was a later development, but the reader ought to know enough

about it to understand TPK. If not , here is a brief run-down on what

the above program means: Line 1 says that i is an integer-valued
variable, while y takes on floating-point approximations to real

values; and a0,a1, . . ., a10 are also real valued. Lines 2 and ~ define

the function f(t) = ~J I t I  + 5t , for use in the algorithm proper

wriich starts on line 4. Line 4 reads in the values

in this order; then line 5 says to do lines 6, 7, 8, 9 (delimited by
and end ) for i = 10,9,.. .,O , in that order. The latter

lir.~ : cause y to be set to f(a
~ ) , and then one of two messages is

written out. The message is either the current value of i followed

by the words “ TOO LARGE” , or the current values of i and y ,

according as y > 11.00 or not . )
Of course this algorithm is quite useless; but for our purposes

it will be helpful to imagine ourselves vitally interested in the process.
Let us pretend that the function f(t) =~/jT i~ + 5t has a tremendous

practical siguificance, and that it is extremely import ant to print out
the function values f(a~) in the opposite order from which the a.

are received. This will put us in the right frame of mind to be reading

the programs. (If a truly useful algorithm were being considered here,
it would need to be much longer in order to illustrate as many different
programming language features.)

Many of the programs we shall discuss will have italicized line

numbers in the left-hand margin, as in the Algol code above. Such numbers

are not really part of the programs, they appear only so that the
accompanying text can refer easily to any particular line .

It turns out that most of the early high-level languages were

incapable of handling the TPK algorithm exactly as presented above ;
so we must make some modifications. In the first place, when a language
deals only with integer variables, we shall assume that all input s and
outputs are integer valued, and that “ sqrt(x) “ denotes the largest

integer not exceeding /~ . Secondly, if the language does not provide

14



~~~~~~
-- -.--

~~~~~~~~~~~~~~ ~~~~~~~~
- . .

~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~1’

for alphabetic c L ~ u~ , the string “TOO LARGE” will be replaced by the

number 9-~Q . Thirdly, some languages do not provide for input and

output at all; in such a case, we shall assume that the input values

a0, a1, . . ., a.10 have somehow been supplied by an external process, and

that our job is to compute 22 output values b0,b1, . .,b21 . Here

b0, b2, . . ., b20 will be the respective “ i values” 10,9, . . .,O , and the

alternate positions b1, b
3
, . . ., b~1 will contain the corresponding f(a . )

values and/or 999 codes. Finally, if a language does not allow the

programmer to define his own functions, the statement “ y := f ( a ( i ] )  “

will essentially be replaced by its expanded-out form

y := sqrt(abs(a[i])) +5 x a [ i I  13 “.

~~~~~~~eve1o ments.

Before getting into real programming languages, let us try to set

the scene by reviewing the background very quickly . How were algorithms

described prior to 19145?

The earliest known written algorithms come from ancient Mesopotania,

about 2000 B.C. In this case the written descriptions contained only

sequences of calculations on particular sets of data, not an abstract

statement of the procedure ; it is clear that strict procedures were

being followed (since, for example, multiplications by 1 were explicitly

performed), but they never seem to have been written down. Iterations

like “ for i := 0 ste~ 1 until 10 “ were rare, but when present they

would consist of a fully-expanded sequence of calculations. (See [KN 72],

for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract

algorithms had been studied rather thoroughly; for example, see [KN 9,

j . 295] for a paraphrase of Euclid’s presentation of “Euclid’s algorithm” .

The description of algorithms was always informal, however, rendered

in natural language .
During the ensuing centuries, mathematicians never did invent a

good notation for dynamic processes , although of course notations for

(static) functional relations became highly developed. When a procedure

involved nontrivial sequences of decisions, the available methods for
precise ~e~cr~j t~ on remained informa~ and rather cumbersome.

5

~— r ~~~~~ - -~~~~
----...

~~~ -~~ 
___ ._ . _._~-._‘~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~ - -. .~~,..- -,

- . - .‘ -~~~~~~~~~~~ -

~xarn~lu programs written for early computing devices, such as those

~or Babbage ’ s Calculating Eugiiie, were naturally presented in “machine

language” rather than i~ a true programming language. Thus : (a) The
three-address code for Babbage’s machine was to consist of instructions
such as “ V4 x V0 = V10 

“, where operation signs like “ x ” would appear

on an Operation-card, and subscript numbers like (14 , 0 , 10) would appear

on a separate Variable-card. The most elaborate program developed by

Babbage and Lady Lovelace for this machine was a routine for calculating
Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) In 1914, Leonardo
Torres y Quevedo used natural language to describe the steps of a short

program for his hypothetical automaton ; and Helmut Schreyer gave an
analogous description in 1939 for the machine he had helped Konrad Zuse

to build [see HA 73, pp. 95-98 , 167]. (c) An example MAR K I program
given in 19146 by Howard Aiken and Grace Hopper [see BA 73, pp. 216-218 ]
:hows that its machine language was considerably more complicated.

Although all of these early programs were in a machine language,
it is interesting to note that Babbage had noticed already on July 9, 1836
that machines as well as people could, produce programs as output:

This day I had for the first time a general but very indistinct

concept ion of the possibility of making an engine work out algebraic

developments. I mean without 
~~i 

reference to the value of the

1ett~’rs. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first 3o it might perhaps be possible to cause the same

cards to punch others equivalent to any given number of repetitions.

But there hole [sic] might perhaps be small pieces of formulae

previously made by the first cards. [HA 73, p. 3149]

To conclude this survey of prior developments, let us take a look at

A. M. 1~ring ’s famous mathematical paper of 1936 [TU 36], where the

concept of a universal computing machine was introduced for theoretical

~urposes. Turing’s machine language was more primitivL, not having a

built-in arithmetic capability, and he defined a complex program by

giving what amounts to macro-expansions or open subroutines. For example,

here was his program for making the machine move to the leftmost “ a” on

its working tape :



,-
~~~ 

w.,’ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

~~

-- -, -

m-config. symbol behavior final m-config .

(a L f
1(C,B,

a)
f(C,B,a)

not ~ L f(C,B,a)

(a C

B, a) not a H f1(C, B, a)

L Non e B

í a C

not a R f
1(C,

B,a)

L None R B

7

—— ~~
--

~~ ~~~~~
~

p~
.

[In order to carry out this operation, one sends the machine to state

f(C,B,a) ; it will immediately begin to scan left (L) until first

passing the symbol a . Then it moves right until eifier encountering
the symbol a or two consecuti~.’e blanks; in the first case it enters

into state C while still scanning the a , and in the second case it
enters stat e~ B after moving to the right of the second blank. Turing

used the term — “in-configuration” for state.]

Such “ skeleton tables”, as presented by Thring, represented the

highest-level notations for precise algorithm description that were

developed before our story begin s -- except, perhaps, for Alonzo Church ’s

“A-notation” [CII 361 which represents an entirely different approach to

calculation. Mathematicians would traditionally present the control

mechanisms of algorithms informally, and the computations involved would
be expressed by means of equations . There was no concept of assi~~ment

(i . e . , of replacing the value of some variable by a new value); instead

of writing “ s — -s “ one would write
~~+l

= ~~~~~~~ , giving a new name to

each quantity that would, arise during a sequence of calculations .

Zu se ’ s ”Plancalculus” .

Near the end of World War II, Allied bombs destrcyed nearly all of

the sophisticated relay computers that Konrad Zuse had been building in

Germany since 1936. Only his z14 machine could be rescued, in what Zuse
describeL as a fantastic [“ abenteuerlich”] way; and he moved the 7)4 to

a little shed in a small Alpine village called Hinterstei n.

It was unthinkable to continue practical work on the equipment;

my small group of twelve co-workers disbanded. But it was now a
satisfactory time to pursue theoretical studies. The 7)4 Computer

~qhich had been rescued could barely be made to run, and no •1
especially algorithmic language was really necessary to program

it anyway . [Con ditional commands had consciously been omitted;

see [RA 73, p. 181].] Thus the PK [Plankalk~ilJ arose purely as a

piece of desk-work, without regard to whether or not machines

sui table for PK’s programs would be available in the foreseeable

future. [ZU 72, p. 6].

8

—~~~~~——~~ - — - - -.

Zuse had previously come to grips with the lack of formal notations

for algori thms while working on his planned doctoral dissertation
[zu 1414]. Here he had independently developed a three-arl,clress notation
remarkably like that of Babbage; for example, to compute the roots

and x2 of x
2
~ ax + b = 0 , given a = V1 and b = V2 ,

he

prepared the following Rechenplan [p. 26] :

V1:2 =V
3

V3
.v

3 =Vl1.

V14-V2 = V
5 -

~ V5 = V 6

v3(-i) = V 7
V +V6= V 8= x 1

V7 -V6 = V 9 =x 2 .

He realized that this notation was linlted to strb.ight-line programs

[so-called starre P1~.ne], and he concluded his previous manuscript with

the following remark :

Unstarre Rechenpl~ne constitute the true discipline of higher

a combinatorial computing; however, they cannot yet be treated in
this place . [zU 44, p. 31]

The completion of this work was the theoretical task Zuse set himself

in 1945 , and he purcut~ I it very energetically. The result was an ama zingly
‘:umj~rehen:ive language which he called the PlankalkUl r program calculus],
an ext’~:sion of }U bert ’ s AussagenkalkUl [propositional calculus] and

i . ~~ enkalk Ul [j r~~I~~~ l e calculus]. Before laying this project aside ,

,w ’ had ce~i~~~t~ -d an e~r~ensive manuscript containing programs far more
- i~~~; I ‘~ than anything €v ’ r wrItten before. Among other LiJn~~’, there were

algoriti s~. for .or ~ ~ng; for testing the connectivity of a graph represented

as a list of edges; for ~.t eger arithmetic (including square roots) in

~i:~~r; no~ - r. ; and for floating-point arithmetic. He even developed

9

- ~~—-—

‘“ T~
i 1

~
” ~~~~~~~~~~~~~~~~~~~ “~~“

- “~~~~~~~~~~~ ‘ “ ~~~

.4’.,

algorithms to test whether or not a given logical formula is syntactically

well-formed, and. whether or not such a formula contains redundant
parentheses -- assuming six levels of precedence between the operators.

To top thIngs off, he also included 49 pages of algorithms for playing
chess. (Who would have believed that such pioneering developments

could emerge from the solitary village of Hinterstein? His plans to

include algorithms for matrix calculations, series expansions, etc.,

had to be dropped since the necessary contacts were lacking in that

~J ace; furthermore, his chess playing program treated “en passant

captures” incorrectly, because he could find no chess boards or people

to play chess with [zU 72, pp. 32, 35])
Zuse’ s 19145 manu~eript unfortunately lay unpublished until 1972,

although brief excerpts appeared in 19148 and 1959 [zU)43, ZU 59]; see also

[BW 72], where his work was brought to the attention of English-speaking

readers for the first time. it is interesting to speculate about what

would have ha~~ened. if he had published everything at once; would many

i:eop le have been able to understand such radical new ideas?

The monograph [ZU 14 5] on PlankalkUl begins with the following

statement of motivation :

Aulgabe des PlankalkUls ist es, beliebige Rechenvorschriften rein I:

formal darzustellen. [The mission of the Plancalculus is to

provide a purely formal description of any computational procedure.]

~,, in particular, the Plankalkil], should be able to describe the TPK

algorithm ; and we had better turn now to this program, before we forget

what TPK is all about . Zuse ’ s notation may appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.

10

_ _ _ _ _ ~~~~~~~~~~~

1 A2 = (A9, :~.l)

P1 R(V) ~~R

V 0 0

. 1 A~~~~l

3‘
~ ~~ + 5 x V ~ R

V 0 0 0

A L~1 ~~

8 P2 R(V) ~~R

2 v o 0

A llxal 11x2

II w2(ll) R1(v) z

12 V 0 0

K

A

Z > ~4OO -. (i,+~) ~ H r (10-i)
K

A ~~~~‘ 9 2 9

14oo . (i , Z) R r (10-i)

V 0 0

21 K

22 A ~l 9~~~~l 2 9

a
Line 1 of this code is the declaration of a compound data type, and

before we discuss the remainder of the program we should stress the richness

of data structures provided by Zuse’s language (even in its early form

[ZTJ 414]). This is, in fact, one of the greatest strenL’ths of the

Plankalklil; none of the other languages we shall discuss had such a
perceptive notion of dat a, yet Zuse’ s proposal was simple and elegant.

He started with data of type SO , a single bit [“ Ja-N ein-Wert”] whose

value is either “ - “ or + “ . From any given data types -~~~,, •
~

a programmer could define the compound dat a type (°~~ ~~
‘
0k_i) and

11

_

~~~~~~~~~~~~~~~~~~~~ ~~
-:::=~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~ :~~~~.


— .-. S

~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~T” 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r’~~~~~~ ‘ “ ~~~~~~~~~~

individual component s of this compound type could be referred to by

applying the subscripts 0 ,... , k-i to any variable of that type.

Arrays could also be defined by writing m x ~ , meaning m identical

components of type 0 ; and this idea could be repeated, in order to

obtain arrays of any desired dimension. Furthermore m could be “(n ”,
meaning a list of variable length, and Zuse made good use of such list
structures in his algorithms dealing with graphs, algebraic formulas, and
chessplay .

Thus the Plankalkill included the important concept of hierarchically

structured data, going all the way down to the bit level. Such advanced

data structures did not enter again into programming languages until the

late 1950’:, in IBM ’s Commercial Translator. The idea eventually

appeared in many other languages, such as FACT, COBOL, PL/I, and

extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkül were represented by type A9

c~other special type was used for floating-binary numbers, namely

ALI~J- = (3 x So ,7xSO ,22 x 50)

The first three-bit component here was for si~ is and special markers - -
indicating, for example, whether the number was real or imaginary or zero; the
second was for a seven-bit exponent in two’s complement notation; and

the final 22 bits represented the 23-bit fraction part of a normalized nu~Ther,

with the redundant leading “1” bit suppressed. Thus, for example, the
floating-point number +1400.0 would have appeared as

(_ +_ , _ __ + +__ +) ~

and it also could be written

(Lo , L000 , LOOL000000000000000000)

[The + ‘: and - ‘ s notation has its bits numbered 0,1,... from left-to-

right, while the L ’ s and 0’s notation corresponds to the more familiar

binary notation, putting most si~~ificant bits at the left.] There was a

special representation for “infinite” and “ very small” and “unde fined”

quantities; for example,

12

w~~~~~__-_
~~~~~~~~~ 

- - 55 .— ——--5- !._____-5__ __
~__,_______._____ __ S _ -5-—- —--5 -r --- -~ .~ -.- .- -..-~~.r

+ = (LLO , L0000, 0)

Not e that the above program uses + ~ instead of 999 on line ~~~~, since

such a value seems an appropriate way to render the concept “TOO LARGE”

Let us return nrw to the program itself. Line 1 introduces the data

type A2 , namely an ordered pair whose first component is an integer

(type A9 ) and whose second component is floating.-point (type AA1 ).
I

This data type will be used later for the U outputs of the TPK algorithm.

Lines 2 thru 
~ 

define the function f ( t )  , and lines 8 thru 22 define the

main TPK program.
The hardest thing to get used to about Zuse ’s notation is the fact

that each operation spans several lines; for example, lines U thru 14 must

be read a~ a unit. The second line of each group (labelled “ v ” )  is used

to identify the subscrir~~ for quantities named on the top line; thus

H , V , Z stands for ~ variables R0 , V0 , Z0 . Operations are done
p Q () Q

primarily on output variables [“Resultatwerte ”] R
~K 
, input variables

[“Variablen”]  Vk , and intermediate variables [“ Zwischenwerte”] Zk
Th~ “ K” line is used to denote components of a variable, so that, in

our example, V means component i of the input variable V
0 0

1

(A completely blank “ K” line is normally omitted. ) Complicated subscripts

can be handled by making a zig-zag bar from the K-line up to the top li ne,

as in line ~~ of the above program where the notation indicates component

10-i of H0 . The bottom line of each group is labeled A or S , and

it is used to specify the type of each variable. Thus the “2 ” in line 18

of our example mean s that R0 is of type P2 ; the “ L~1 
“ means that Z0

is floating-point (type AA1 );  and the “ 9” means that i is an integer.

Thus each “ A ” in the left margin is implicitly attached to all types in

it s line .
Zuse remarked (ZU 145, p. 10] that the number of possible data types

was so large, it would be impossible to indicate a variable’s type simply

by using typographical conventions as in classical mathematics; thus he

realized the importance of apprehending the type of ea th variable at

each poin t of a program, although this information is usually redundant .
This is probably one of the main reasons he introduced the peculiar

multi-line format . Incidentally, a somewhat similar multi-line not ation

13



- S-5-5555--55S~~-5

has been used in recent years to describe musical notes [SM 73]; it is
interesting to speculate if this notation will evolve in the same way

that programming languages have.
We are now ready to penetrate further into the meaning of the above

• code. Each plan begins with a specification part [“Randauszug ”], stating
the types of all inputs and outputs. Thus, lines 2 thru 4 mean that P1

is a procedure that takes an input V0 
of type A~l (floating point ) and

produces R0 of the same type. Lines 8 thru 10 say that P2 maps V0 of

type U x ALl (namely, a vector of 1 floating-point numbers, the array a1
of our TPK algorithm) into a result R0 of type U x P2 (namely, a vector

of 11 ordered pairs as described earlier).
The double arrow ~ , which Zuse called the Ergibt-Zeichen (yields-sign),

was introduced for the assignment operat ion ; thus the meaning of lines 5
thru 

~ 
should be clear . As we have remarked, mathematicians had never

used such an operator before; in fact, the systematic use of assignments
constitutes a distinct break between computer-science thinking and

mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 14-5, p. 15] that Z+1 Z was analogous to
3 3

to the more traditional equation z + 1 = z . (Incidentally, the
3.1 3.1+1

publishers of [ZU 148] used the sign > instead of , but Zuse never

actually wrote )= himself. ) Note that the variable receiving a new value

appears on the right, while most present-day languages have it on the left.

We shall see that there was a gradual “leftist” trend as languages

developed.

It remains to understand lines U thru 22 of the example. The notation

W2(n) “ represents an iteration, for I = n-i down to 0 , inclusive;

hence W2(ll) stands for the second for loop in the TPK algorithm.

(The index of such an iteration was always denoted by i , or 1.0 ; if

another iteration were nested inside, its index would be called 1.1 ,

etc.) The notation Rl(x) on line U stands for the result 
~~ 

of
0

applying procedure Fl to input x . Lines 15 thru 18 of the program mean

“ if > 1400 then R0[10-i] := (1, +~~) “ ; note Zuse ’s new notation -.
for conditionals. Lines ~~ thru 22 are similar, the bar over “ Z0 > 1400

indicating the negation of that relat ion . There was no equivalent of

else “ in the Piankalkiil, nor were there go to statements. Zuse did,

114

55— - - .



~—. 5 -—-- -. ——“ ‘---_,——.---S— --

however, h/~ve the notation “ Fin “ with superscripts, to indicate a

jump out of a given number of iteration levels and/or to the beginning
of a new iteration cycle [cf. ZU 72, p. 28; ZU 145, p. 32]; this idea
has recertly been revived in the BLISS language [WR 71].

The reader should now be able to understand the above code completely .

In the text accompanying his programs in PlankalkUl notation, Zu~e

made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Pnsatz;

we would now call it an “invar 1ant” . This was yet another fundamental

idea about programming; and, like Zuse ’ s data structures, it disappeared

from programming languages during the 1950’ s, waiting to be enthusiastically

received when the time was ripe [HO 71].
Zuse had visions of using the Plankalidil some day as the basis of a

programming language that could be translated by machine (cf . [zU 72,
pp. 5, 18, 33, 3 14]); but in 19145, he was considering first things first

- - namely, he needed to decide what concepts should be embodied in a

notation for progr amming . We can summarize his accomplishments by

saying that the Plankalkiil incorporated many extremely important ideas, but
S 

it lacked the “ syntactic sugar ” for expressing programs in a readable

and easily writable format .
Zuse says he made modest att empts in later year s to have the

Plankalkill implemented within his own company, “but thi s project

necessarily foundered because the expense of implementing and design ing

compilers outstripped the resources of my small firm.” He also mentions

his disappointment that more of the ideas of the PlankalkUJ. were not

incorporated into Algol 58, since some of Algol’ s original designers

knew of his work . [ZU 72, p. 7] Such an outcome was probably inevitable,

because the Plankalkiil was far ahead of its time from the standpoint of

available hardware and software development . Most of tb other languages
we shall discuss started at the other end, by asking what was possibl e

to implement rather than what was possible to write;  and it naturally

took many year s for these two approaches to come together an~i. t o  achieve

a suitable synthesis.

_ _  A



-~~~. -~~~~ — ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John
von Neumann were wrestling with the same sort of problem that Zuse had
faced: How should algorithms be represented in a precise way, at a
higher level than the machine ’s language? Their answer, which was due
in large measure to Goldstine ’ s analysis of the problem together with
suggestions by von Neumann , Adele Goldstine, and Arthur W. Burks [GO 72 ,
pp. 266-268], was quite different from the PlankalkUl : they proposed a
pictorial representation involving boxes joined by arrows, and they called
it a “flow diagram” . During l914t~ and 1911.7 they prepared an extensive
and carefully worked out treatise on progran~ ing based on the idea of

flow diagrams [GV 147], and it is interesting to compare this work to

that of Zuse. There are striking differences, such as an emphasis on
numerical calculation rather than on dat a structures; and there are also
striking parallels, such as the use or the term “ Plan ” in the titles of

both documents. Although neither work was published in contemporary
journals, perhaps the most significant difference was that the treatise
of Goldstine and von Neumann was beautifully “Varityped” and distributed

in quantity to the vast majority of people involved with computers at

that time. This fact , coupled with the high quality of presentation and
von Neumann’ s prestige, meant that their report had an enormous impact,

forming the foundation for computer programming techniques all over the

world. The term “flow diagram” became shortened to “ flow chart” and

eventually it even became “flowchart” -- a word which has entered our

language as both noun and verb .

We all know wh at flowchart s are; but comparatively few people have

= seen an authentic original flow diagram . In fact, it is very instructive

to go back to the original style of Goidatine and von N eumann, since

their inaugural flow diagrams represent a transition point between the
mathematical “equality” notation and the computer-science “ assignment”

operation . Here is how the TPK algorithm would probably have looked,
jf Goldstine and Von Neumann had been asked to deal with it in 19147 :

-5 - -  - 5-  5 ~~~~~~~~~~~~ 5 5 - - -5- . -  .5



- . 
~~~~~~ T .~.: ~~~~~~~~~~~~~~~~~~~~~~~~

A .j 2 ~u . (j = 2 . 1 0

A.j 2 ’°a~ (j = . 1 ~~. 55

2.1 ~~~~~~~~ 2 .1 2

2 2 (a-~- i) 0

~ (b 1~ 5 ~b*2~~ 2i)0 ~~~~; ~~~ ..]
1

I
.

o-~ ~~~~~~~
i 1 .

-
~~~ 

_ _  ~~~~ ~~

-

. 

_ _

vol +
~~~~

—.—
~

O~ 2 -y . ~~~~~~~~~

I
2 ,~~-1 ~~

(a + i - l)~ to 2
5-
1

—

to S •
\
.

v
i =~~~i ..

~~

-02 .

5

~~~~~
b21~~~~~ ~ : 

- - 

~~~~~~~~~~~ 
:

17

S ~~~~~~~~~~~~~~~~~~~~~~~

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S. ”

Several things need to be explained about thi s original not ation,

and probably the most important consideration is the fact that the boxes

containing “ 10 -. i “ and “ i-i -. i “ were not intended to specify any

computation. This amounts to a significantly different viewpoint than

We are now accustomed to, and the reader will find it worthwhile to

ponder this conceptual difference until he or she understands it. The

box “ i-l -. I “ represents merely a change in notation, as the flow

of control passes that point, rather than an action to be performed by

the computer. For example, box VII has done the computatiai necessary

to place 2 39(i-l) into storage position C.l ; so after we pass the

box “ i-l -. i “ and go thru the su~sequent junction point to box II,
location C.1 now contains 2~~~ 1 . The external notation has changed

but location C.l has not~ This distinction between external and internal

not ations occur s throughout, the external notation being problem-oriented
while the actual contents of memory are machine-oriented.. The numbers

attached to each arrow in the diagram indicate so-called “ constancy

intervals” , where all memory locations have constant contents and all

bound .rariables of the external notation have constant meaning.

A “ storage table” is attached by a dashed line to the constancy intervals,
to show the relevant relations between external and internal values at

that point. Thus, for example, we note that the box “ 10 -. I “ does

not specify any computation, but it provides the appropriate transition

from constancy interval 1.5 to constancy interval 2 . (Cf. [GV 147,

~~~~ 7. ’l , 7.73.)
There were four kinds of boxes in a flow diagram : (a) Operation

boxes , marked. with a Roman numeral; this is where the computer progr am

was supposed to make appropriate transitions in storage. (b) Alternative

boxes, also marked with a Roman numeral, and having two exits marked +

and - ; this is where the computer control was to branch, depending on

the sign of the named quantity. (c) Substitution boxes , marked with a

• * and using the “ -. “ symbol ; this is where the external notation for

a boun d variable changed , as explained above . (d) Assertion boxes , also

marked with a # ; this is where important relation s between external

notations ‘irid the current state of the control were specified . The

exami le • h rj~~~ three -~~2ert ion bex - . , one which ay~ “ i = -l “, and two

18

-S - -5 - - - 5 - -.

‘w’ ~~~~ ~~~~~~~~~~~‘ “ ‘ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,., ..., -- ~-r

I

• which assert that the outputs u~ and v. (in a problem-oriented

notation) now have certain values. Like substitution boxes, assertion

boxes did not indicate any action by the computer, they merely stated

relationships which helped to prove the validity of the program and

which might help the programmer to write code for the operation
boxes.

The next most prominent feature about original flow-diagrams is

the fact that a programmer was required to be conscious of the scaling

(i.e., the binary point location) of all numbers in the computer memory .

A computer word was 140 bits long and its contents was to be regarded ao a binary

fraction x in the range -l < x < 1 . Thus, for example, the above

flowchart assumes that 2
10a~ is initially present in storage position

A.j , rather than the value a . itself; and the output~ b~ are

similarly scaled.

The final mystery which needs to be revealed is the meaning of

notations such as (a+i) 0 , (b) 0 , etc. In general, “ x0
“ was used

when x was an integer machine address; and it represented the number

2 x + 2 x , namely a binary word with x appearing twice, in bit

positions 9 to 20 and 29 to 140 (counting from the left). Such a

number could be used in their machine to modify the addresses of 20-bit

instructions that appeared in either half of a 140-bit wor’~.

r Once a flow diagram such as this had been drawn up, the remaining

task was to prepare so- called “ static coding” for boxes marked with

Roman numerals. In this task a programmer would use his problem-solving

ability, together with his knowledge of machine language and the

information from storage tables and assertion boxes , to make the required

transitions. For example, in box VI one should use the facts that u~ i ,
S

-10that storage D contains 2 v~ , that storage C.l contains 2

and that storage C.3 contains (b +20 -2 i)
0

[a word corresponding to

the location of variable B.20-2i J to carry out the specified assignments.
The job of box VII is slightly trickier: One of the tasks, for example,

is to store (b + 22 _21)o in location C.3 ; the programmer was supposed

to resolve this by adding 2.(2l9+2~~9) to the previous contents of C.~ .

In general, the job of static ‘oding required a fairly high level of

L

artificial intelligence, an~ ~ was far beyond the state of’ the art in

19

- ‘ “

~

‘-

~~~~~ 
‘ “

~~

‘

in those days to get a computer to do such a thing. As with the

Plankalkill, the notation needed to be simplified if it was to be
suitable for machine implementation.

Let us make one final note about flow diagrams in their origi nal
form: Goldstine and von Neumann did not suggest any notation for
subroutine calls, hence the function f(t) in the TPK algorithm has

been written in-line. In [CV 147, §12] there is a flow diagram for
the algorithm that a loading routine must follow in order to relocate

subroutines from a library, but there is no example of a flow diagram

for a driver program that calls a subroutine. An appropriate extension

of flow diagrams to subroutine calls could surely be made, but it would

have made our example less “authentic” .

~~~~~~~~~~~~~~~~~~~~

Let us now turn to the proposals made by Haskell B. Curry, who was

working at the Naval Ordnance Laboratory in Silver Spring, Maryland;

his activity was partly contemporaneous with that of Goldstine and
von Neumann, since the last portion of [CV 147] was not distributed until
19148.

Curry wrote two lengthy memoranda [Cu 148, CU 50] which have never

been published; the only appearance of his work in the open literature

has been the brief and somewhat cryptic summary in [CU 50’]. He had

prepared a rather complex program for EN IAC in 19146, and this experience

led him to suggest a notation for program construction that is more

compact than flowcharts.

His aims, which correspond to important aspects of what we now call

“ structured programming”, were quite laudable :

The first step in planning the program is to analyze the computation

into certain main parts, called here divisions, such that the

program can be synthesized from them. Those main parts must be

such that they, or at any rat e some of them, are independent

computations in their own right, or are modifications of such

computations. [CU 50,~~~ 3 14]

20

5- rr .,. ~--~- - - —--.—5---+ ~~~~~ ‘-S’~~+-S ”5+fl~~ ~ -5~ S’ —,--~-- 5-~~~~~~~~ 5 - ’ - - -“55-.--—. - -
~1U!I~~~~

I

But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps 5 -is

mathematical abilities tempted him too strongly to pursue the complexities

of fitting such pieces together. As a result, the notation he developed

was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) [~f[~~~~ + 5t3:A~
I = [10:13 -. {t = L(a+i)) -. F(t) -. [A:yJ

-. II -. 1t
7
(O,i) —

~
0~,& I~

II = [x = L(b +2O -2i)) -. [i:x) -. III
-. [w = L(b +21 -2i)) -. [y:w3

III = [y > i~fl0J -. j999:y) &0~

The following explanations should suffice to make the example clear,

although they do not reveal the full generality of his language:

(E:x} means “compute the value of expression E and store it in

location x

A denotes the accumulator of the machine .

= L (E)) means “ comput o~ the value of expr -ssion E and substitute

it into all appearances of ‘ x ’ in the following instruction

4 groups”.

X —. Y means “substitute instruction group Y for the first exit

of instruction group X “ .

denotes the j-th entrance of this routine, namely the beginning

of its j-th instruction group.

denotes the j-th exit of this routine (he used the words “input”

and “output” for entrance and exit).

[x > y} -. Ol&02 means “if x > y , go to 01 , otherwise to 02

1t
7
(m,i) -. Ol&O2

means “decrease i by 1 , then if I > m go
to °2 ~

otherwise to O~
“ .

Actually the main feature of interest in Curry’s early work is not

• thi s programming language, but rather the algorithms he discussed for

21

3

~

5 - ” —
‘ “ — ~~ ~~~~~~~~~~~~

——5-’ .— ---. -

~~~~~~~~~~~~~~~~ 
“ - ““ '“ T~~~ ” ’ 

~~~~~~~ 

‘5- ’_.~ -
5- ~~,.w-.—-

converting ~ arto of it into machine language . He gave a recursive
description of a procedure to convert fairly general arithmetic expressions

into code for a one-address computer, thereby being the first person to

describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-

known constructions in mathematical logic, assuming that any formula
could be parsed. properly.) His motivation for doing this was stated in

[CU 50’]:

~ow von Neumann and GolJ.stine have pointed. out that , as programs
are made up at present, we should. not use the technique of program

composition [i.e., subroutines] to make the simpler sorts of programs

-- these would. be programmed. directly -- but only to avoid.
repetitIons in programs of some complexity. Nevertheless, there

are three reasons for pushing clear hack to formation of the
simplest programs from the basic programs [i.e., machine language

instructions], viz.: (1) E~cperience in logic and. in mathematics

shows that an insight into principles is often best obtained by a

consideration of cases too simple for practical use -- e.g., one
gets an insight into the nature of a group by considering the

permutations of three letters, etc. ... (2) It is quite possible

that the technique of program composition can completely replace

the elaborate methods of Goldstin e and von Neumann; while this ma~
not work out, the possibility is at least worth considering.
(~) The technique of ~rogram composition can be mechanized.; ii

’

it should. prove desirable to set up programs, or at any rate certain

kinds of them, by machinery, pr€ sumably this may be done by

analyzing them clear down to the basic programs .

The program he would have constructed for F(t) , if t were replaced L-~i
t.t.t ,

[~tI:A)
-. [v ~~~:A~ -. [A :w) -. [t:RJ -. [tR:A) -. {i~:R) -. [tR :A)

[A :RJ {5R:A} [A + W:AJ .

Here w is a temporary storage 1jca~~~ri , and R is a register used in

multiplication.

J

F~~~~~~
’ 5-”' ,

~~~~ 

- -

~~~~~ 

..

~~~~~~~~~ 

~~~~~~~~~~~~~~~ -.~ ‘-- -55-555555~~~~~~ 5 55-S~~55 S~~~~~~~~ 
.5_S

An Algebraic Interpreter.

The three languages we have seen so far were never imt~ emented; ti-1o- ,-

served. purely as conceptual aids during the programming i roceas . Such

conceptual dids were obviously important, but they still left the

progr ammer with a lot of mechanical things tc do, and. there were many

chances for errors to creel in.

The tir:t “h i~~ -1- - ’.’e1 ’ program iing language actuall:: to be implemented.

was the 2hort 2ode, -:-riginaliy sugges ted by John W. ~auchly in 19149.

William F. .~-ch~~t~i coded it tar the BI~AC at that t r r ~~. Late in 1950,
2:hmit-t r-~ n. a~d. .~hc r~ Code :

‘ -~r thi -~
~~Ai , w t h the assistance of

Albert B. Tonik, ani J. :-~ r e ri. L;-~ an reviaed the program in January 0± l9~1.

Details of the sys± en h~ve never been publi h i l, and the earliest

ex th.n t ~r r’onr- -r ’s :~ar.u ai [RE 55] seam. to have been written originall:;
in 1952.

Th~ ab~e-nae of data about the early Short Code aJicate.~ that it

was not an instant ~-ucc’-s~:, in stite of its eventual historic significance.

This lack at Jar.ty is not ouJ’prising when we czns l Jcr the small

number of scien i fic users of UNDJAC equi~-meot in tJ-iuse days; in tm~t ,

the most surpr i s ing thIng is that an algebraic language such as this wa~
not developed first at the mathematically-oriented centers of computer

activity. Perhaps the reason s th at mathematicians were so conscious

of efficiency considerations, they could. nut imagine wasting any extra

computer time for something a programmer could. do by himself . Mauchly

had greater foresight in this regard; and. J. . Logan put it this w n a :

By means of the Short Code, any mathematical equations may

be evaluated by the mere expedient of writing, them -lawn . There

is a simple symbologicaJ.. tranct- rma~ ~ e of the equations into

code as explained by the accompanying write-uI . The need for

special programming has been e l imin ated .

In our compari:on~ of computer time with respect to time

consumed by manual m:~ hoje , we have found so far a speed ra~
of at i~~ e—t . fif’ty to one. We - -xj ect better results fran future

operations.

23

—-
55 5 ~~ -

- —5---
~~~~~

-5 5 - . _55-—-55 —-S~~,S. - S_~~~~5 -‘ ~~~~~_-~ -- 5— --- -~~~~~~~~~
‘ __ _ _ _ _~r_ ~~~~~ __5-55_5-~~

•__
~~

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is expected. that future use of the Short Code will

demonstrate its power as a tool in mathematical research and

as a checking device for some large-scale problems. [ RR 55]

We cannot be certain how UNIVAC Short Code looked. in 1950; but

it probably was closely approximated by the 1952 version, when TPK
could have been coded in the following way.

Memory equivalents: i = WO , t = TO , y = Y0

Eleven inputs go respectively into words UO , T9 , i~~, ... , TO

Constants: ZO = 000000000000

7.1 = 010000000051 [1.0 in floating-decimal form]

72 = 010000000052 [10.01

Z3 = 0140000000053 [1400.0]

Z14 = AMTOO~~LARGE

= 050000000051 [5.01

Equation number recall information [labels]:

0 = line 01 , 1 = line 06 , 2 = line 07

Short Code:

Equations Coded. representation

00 i = 10 00 00 00 WO 03 22

01 0: y= (/ abs t )+ 5cube t TO 02 07 Z5 II TO

00 YO 03 09 20 06

y 1400 if<t.o 1 00 00 00 YO Z13 141

i print, ‘TOO LARGE ’ print-and-return 00 00 z14 59 WO 58
0 0 if=t o 2 00 00 00 ZO ZO 72

06 1: 1 print, y print-and-return 00 00 Y0 59 WO 58

~~
‘-‘ 2: TO U0 shi ft 00 00 00 TO UC 99

i = i-l 00 WO 03 WO 01 7.1

0 i if<to 0 00 00 00 ZO WO 140

10 stop 00 00 00 00 ZZ 08

214 

- ‘  - -- 
~~~ — -  ~~~~~~~~~~ —~ -


-
~~

Each UNIVAC word consisted of twelve 6-bit bytea, and the Short

Code equations were “symbologically” transliterated. into groups of six

2-byte packets using the following equivalents (among othcrs):

01 - 06 abs value ln (n+2)nd power 59 print and return carriage

02 (07 + 2n (n+2)nd root 7n if= to n

03 = 08 pause 14n if<to n 99 cyclic shift of memory

014 / 09) ~8 print and. tab Sn, Tn, ..., Zn quantities

Thu s, “ I = 10 “ would. actually be coded as the word. “ 00 00 00 Wa 03 ~ :

as shown; packets of 00 ‘ 5 could. be used. at the left to fill a word.

Multiplication was indicated simply by juxtaposition (see line 01).

The system was an algebraic interpreter, namely an interpretive

routine which continuously scanned. the coded. representation and. performed.

the appropriate operations. The interpreter processed each word from

right to left, so that it would see the “ = “ sign last . This fact needed.

to be understood by the programmer, who had to break long equations up

appropriately into several words (c f . lines 01 and 02) ; see also the

print instructions on lines 014 and Q~
, where the codes run from right

to left.

This explanation should suffice to explain the TPK program above ,
except for the “shift” on line ~~~~~~. Short Code had. no provision for

subscripted variables, but it did have a 99 order which performed a

cyclic shift in a specified block of memory . For example, li ne ~~ of

the above program means “ temp = TO, TO = Ti, ..., T9 = U0, UO = temp “ ;

and fortunately this facility is all that the TPK algorithm needs .
The following press release from Remington Rand aj~ eared in Journal

of the AC,~ 1955, page 291:

Automatic programming, tried. and tested. since 195 , eliminates

communication witt~ the computer in special code or language.

The Short-Order Code is in effect an engineering “electronic

dictionary” ... an interpretive routine designed for the solution
of one- Thot mathematical and engineering problems .

25

—- ~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - zee -~~~- --
-

-

-— ~5-S~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -_,,_“-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ,.__ _ _~,. -

(Several other automatic programming systems, including “B-zero” -- which

we shall discuss later -- were also announced at that time.) This is one

of the few places where Short Code has been mentioned in the open

literature; Grace Hopper referred to it briefly in [1-10 52, p. 2143]

F : (calling it “ short-order code”) , [HO 53, p. 1142] (“ short-code”) ,
[HO 58, p. 165] (“Short Code”). In [HM 53, p. 1252] it is stated that
the “ short code~T system was “only a first approximation to the complete

plan as originally conceived..” This is probably true, but several
discrepancies between [HN 53] and [RR 55] indicate that the authors
of [KM 53] were not fully familiar with UNIVAC Short Code as it actually
existed.

The Intermediate PL of Burks.

Independent efforts to simplify the job of coding were being made

at this time by Arthur W. Burks and his colleagues at the University of
Michigan. The overall goal of their activities was to investigate the

process of going from the vague “Ordinary Business Inglish” description

of a data-processing problem to the “Internal Program Language” description

of a machine-language program for that problem; and, in particular, to

break this process up into a sequence of smaller steps.

This has two principal advantages. First, smaller steps can

more easily be mechanized than larger ones. Second, different

kinds of work can be allocated to different stages of the

process and. to different specialists. [EU 51, p. 12]

In 1950, Eurks sketched a so-called “ Intermediate Prograitnning Language”

which was to be the step one notch above the Internal Program Language.
Instead of spelling out complete rules for this Intermediate Programming

Language, he took portions of two machine programs previously published
in [BU 501 and showed how they could be expressed at a higher level of
abstraction. From these two examples it is possible to make a reasonable

guess at how he might have written the TPK algorithm at that time :

26

- -
,-

~~~~~~
-

~~~~~~~
- - - - - -— - -

— -
~‘—~

—,,‘—,.-.-—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.5.- ~~ 
. 

— ‘..,-
~ 

- - 5 - -‘.
~

-- —
~~~~

‘.

p

1. lO —. i

To 1O.

From 1,35
10. A+i -. U Compute location of

U. [A+i] — t Look up a
~

and transfer to storage

p 12. It~~
’2÷5t3 — y y

~ =
~~
iT:-T + 5a~

13. 1400,y; 20,30 Determine if v
~

= y1

T0 2O if y>1400

To 30 if y < 1400

From 13

20. 999— y v. = 999

To 30

From 13,20

30. (B+2O -2i~~ -.31 Compute location of b20 2.

31. i -, [B+ 2 O -2i] b20 21 = i

32. (B + 20 - 2i)+l —33 Compute location of

33. y — [(B + 2O - 2i)+l } b2 i 2~
=v .

314. i_ 1- .i

35. i,0; 140,10 Repeat cycle until i negative

To 40 if 1< 0

To lO if i > 0

Frotn 35
L

11.0. F Stop execution

-

- 27

--‘ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~
—- ~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~

Comments at the right of this program attempt to indicate Burks ’ s

style of writing conments at that t ime; and they succeed in making the

progr am almost completely self-explanatory. Not e that the assi~~iment

operation is well established by now; and Burks used it also in the

somewhat unusual form “ i -. 1+1 “ shown in the coninent to instruction ~14
[ E u 50, p. 141].

The prime symbol which appears within instruction 30 meant that the

computer was to save this intermediate result, as it was a conunon

subexpression that could be used later without reccanputation . Burks
mentioned that several of the ideas embodied in this language were due
to Janet W&~ir, Don Warren, and Jesse Wright.

Methods of assi~ iing addresses arI of expanding abbreviated.

c~~~ands into sequences of connuands can be worked out in advance.
Hence the computer could be instructed to do thi s work. ... It

should be emphasized, however, that even if it were not efficient
to use a computer to make the translation, the Intermediate PL
would nevertheless be useful to the human programmer in planning
and constructing programs. [BU 51, p. 13] 

-

At the other end of the spectrum, nearer to Ordinary Business

Language, Burks and his colleagues later proposed an abstract form of
description which may be of independent interest, even though it does

not relate to the rest of our story. The following example suffices

to give the flavor of their “first Ab straction Language”, proposed in
19514:

C,d*(.r 1 m at)

L.4 (d,[k,s,u],[a,rJ)
1 ult<d<d.*

E (s-r) E (s-r) + - (s-r)
d<l ult d<l ult 1 ult < Z d < d ~

FORM XI: CUSTOMER ’ S STATEMENT

28

55-  - -  - 5 - 5 -  ---- -- -~~~~~~~
-55- 5.--



p

*On the first line, c denotes the customer ’s name and address; and d

is “ 1 inst “, the first of the current month. The symbol L,1(x1, . .
P was used to denote a list of all n-tuples ~~~~~~~~~~ of category i ,

— 
in order by the first component x1 ; and the ~ieanIng of the second line
is “a listing, in order of date d , of all invoices and all remittances

for the past month ” . Here {k , s,u] was an invoice, characterized by

its nimiber k , its dollar amount a , and its discount u ; [a , r] was

a remittance of r dollar s, identified by number a ; and “ 1 ult “ means

the first of the previous month . The bottom gives the customer ’s old

balance from the previous statement, and the new balance on the right.

P “The notation is so desigued as to leave unprejudiced the a~thod of the

statement’s preparation.” [BC 514] Such not ation s hav e not won over tLo

business comnunity, however, perhaps for the reasons explained by

Grace Hopper in [HO 58, p. 198]:

I used to be a mathematics professor. At that time I found th~ r-

were a cert ain number of student s who could not learn mathematics.

I then was charged. wit.h the job of making it easy for businessmen

to use our computers. I found it was not a question of whether

they could learn mathematics or not, but whether they would..

They said, “Throw those symbols out - - I do not know what they mean,

I have not time to learn symbols. ” I suggest a reply to those

who would like data processing people to use mathematical symbols

that they make them first attempt to teach those symbols to

vice-presidents or a colonel or ai~hniral. I assure you that I

tried it.

Rutishauser ’s contribution.

Now let us shift our attention once again to Europe, where the first

published report on methods for machine code generation was about to

appear. Heinz Rutishauser was working with the z14 computer which, by

then, had been rebuilt and moved to the Swiss Federal Institute of

Technolog~,r (E.T.H. ) in ZUrich; and plans were afoot to build. a brand. new

machine there. The background of Rutishauser’ s contribution can best be

explained by quoting from a letter he wrote some years later:

29

- -5 -



-5 —- --,---.-- ~~ 5-—.--- —.-----——- -“------- - .—~.-. - —“ ,~~----—- - — 55—-~~~ —~~~~~ -.- ——-5-.---—— —- - 5.-- -5-- - -~~~

I am proud that you are t aking the trouble to dig into my 1952
pape - On the other hand it makes me sad, because it reminds me
o~ th ~rematu -e death of an activity that I had started hopefully
in l~149, but ccu.lcl riot continue after 1951 because I had to do
ot~~ r work -- ~~~ run practically singlehanded a fortunately slow
computer as mathematical analyst, progr~~ ner, operator and even
troubleshooter (but not as an engineer). This activity forced
me also to Lieveirn new numerical methods, simply because the ones

then know.. ~c iork in larger problems. Afterwards when I

wc-~i-I have had. more time, I did not come back to automatic

rrograirnning but found more taste in numerical analysis. Only much

later I was invited - - more for historical reasons, as a living
fossil so to speak, than for actual capacity -- to join the ALGOL
venture. The 1952 paper simply reflects the stage where I had to
give up automatic programming, and I was even glad that I was able
to put out that interim report (although I knew that it was final).
[RU 63]

Rutishauser ’s comprehensive treatise [RU 52] described a hypothetical

computer and a simple algebraic language, together with complete
flowchart s for two compilers for that language. One compiler expanded
all loops out completely, while the other produced compact code using

index registers. His source language was somewhat restrictive , since

there was only one nonsequential control structure (the for statement);

but that control structure was in itself an important cont—:ibution to

the later development of programming lan guages. Here is how he might
have written the TPK algorithm:

1 Für I = io(-i)O
2 a~~~~~ t

~ (SqrtAb s t ) + (5xtx t x t)~~~~y

4 Max(Sgn(y-1i.OO), 0) 9~ 
h

5 Z 0~ 4c b2 0 2~
6 (hx999)+((1-h)xy) ~~~b21 21

I. Eude lndex i

8 Sebluss

30

- - -



Since no “if ... then” construction --much less go to -- wu~ r~sent

in his language, the computation of
P

[ y, if y<1400 ,

~~999 , if y>1400 ,

has been done here in terms of the Max and Sgn functions he ~iiJ ~~~~
plus appropriate arithmetic; see lines 14 and o. (The function S~ 1(x)

is 0 if x = O , or +1 if x > O , or -l if x < 0 . )  ~~ot}~ -v

problem was that he gave no easy mechanism for converting between

indices and other variables; indices (i.e., subscripts) were comp1eti~i~v

tied. to FUr - E~ide loops. The above program therefore invokes a

trick to get i into the main formula on line ~ ; “ Z O~ 
“ is int€n~ti

to use the Z instruction which transfered. an indexed acidro:: to the

p accumulator in Rutishauser’s machine [RU 52, p. 10], and it is possible

to write this in such a way that his compiler would produce the correct

code . It is not clear whether or not he would have approved of this

trick; if not, we could have introduced another variable, maintain~~1

its value equal to i • But since he later wrote a paper entit-1~L:

“Interference with an ALGOL procedure,” there is some reason to eLe\’- :-

he would have enjoye 9 the trick very much.

As with Short Code, the algebraic source code symbols had to b :

transliterated before the program was amenable to computer ~n1-i:t, and

the programmer had to allocate storage locations for the variables am~t

constants. Here is how our TPK program would have been converted to a

sequence of (floating-point) numbers on punched paper tape, using the

memory assignments a. = 100+i , b~ = 200±i , 0 = 300 , 1 301

5 = 3 0 2 , 1400 = 303 , 999=3014 , y=3O5 , h=3O6 , t= 3 O 7

p

p

31

~~~~~~~~ 
- - - 5 5 - - - - - -- - - 5 -

---- 55

- 55 ~~~~~~~ - - 55---- ‘5-
______ -- -—

~~~~~~~~~~~~~~~~~~~~~~~ 

-5-

Für i l O  (-i) 0

lO~~~,5O , lO , -l , O , Q ,

begin stmt a sub i t

2 010000 , 100 , .001 , 200000 , 307 , Q ,
begin stmt ( t Abs d.uimny Sqrt

010000 , 010000 , 307 , 110000 , 0 , 350800

dummy ) + ( 5 x t x
0 , 2000000 , 020000 , 010000 , 302 , 060000 , 307 , 060000 ,

t x t ) y

307 , 060000 , 307 , 200000 , 200000 , 305 ,
begin stmt ( ( y - 1400 )

010000 , 010000 , 010000 , 305 , 030000 , 303 , 200000 , 100000 ,

dummy ) Max 0 h

0 , 200000 , 080000 , 300 , 2000000 , 506 , Q

begin stmt Z 0 sub i b~0 
sub -2i

5 ~lOOOO , 0 , 230000 , 0 , .001 , 200000 , 220 , -.002 , Q

begin stmt ( h x 999 ) + (
0100000 , 010000 , 306 , 060000 , 3014 , 200000 , 020000 , 010000 ,

( 1 - h ) x y )

010000 , 301 , 030000 , ~o6 , 200000 , 060000 , 305 , 200000 , 200000

b21 sub -2i

221 , -.002 , Q ,

&ide

L Q ’Q ~

Schiuss

Q . , Q .

32

-~~~~~~~~~~~



“ r i ’ 
-5-5 

~~~~~~~~~~~ 

- - ‘ ‘

~~~~~~~~~~~~~~~

‘

~~~~~~

5-

~~

-

p

Here ~ represents a special flag that was distinguishable from

p all numbers. The transliteration is straightforward., except that unary

operators such as “ Abs x ” have to be converted to binary operators

“ x Abs 0”. An extra left parenthesis is inserted before each formula,

to match th e -~ (which has the same code as right parenthesis).

p Subscripted variables whose address is a+ L c~i~ are specified. by

writing the base address a followed by a sequence of values c~1O~~~
this scheme allows multiple subscripts to be treated in a simple way.

The operator codes were chosen to make life easy for the compiler;

~ p for example, 020000 was the machine operation “add’ as well as the

input code for + , so the compiler could. treat almost all operation s

alike. The codes for left and right parentheses were the same as the

machine operations to load and store the accumulator, respectively.

-
~~~~ 

p Since his compilation algorithm is published and reasonably simple,

we can exhibit exactly the object code that would be generated from the

above source input. The output is fairly long, but we shall consider

it in its entirety in view of its importance from the standpoint of

p compiler history . Each word. in Rutishauser ’s machine held. two instructions,

and there were 12 decimal digits per instruction word.

Machine instruction Symbolic form

230010 200050 10 -. Op , Op -. i
230001 120000 1 Op , -Op — Op

200051 230000 Op -. i’ , 0 -. Op

200052 220009 Op -. 1” , ~~1 —. 1R9
239001 2 0 0 1  1+ IR9 — Op , 

Op -. L1
000000 230100 No-op , b e  a -. Op

200099 010050 Op - T , i - Op

020099 210001 Op+T -. Op , Op —. IR1
011000 200307 a

~ 
- Op , Op -. t

010307 110000 t -. Op , I°P I Op

220009 350800 *f 1 -. 1R
9 

, go to Sqrt

000000 000000 no-op, no-op

• 200999 O19~O2 Op -. P1 , 5 - Op

33

-- - -



—5- - -  ~~~~~~~

Machine Instruction Symbolic form

060307 060307 Opxt - Op , O p x t -. Op

060307 200998 Op x t — O p ,  Op — P2
010999 020998 P1 -. Op , Opf P~ —. Op
200305 010305 Op —. y, y -. Op

030303 200999 Op-1400 Op , Op — P1
010999 100000 P1 

-. Op , S~ a Op -. Op

200998 010998 Op -. P2 , P2 -. O.p

080300 200306 Max(Op,0) -. Op , Op -. h

230000 200099 0 -. Op , Op -. T
010050 020099 i —. Op , Op+T -. Op

210001 230220 Op - IR1 , b c  b20 
-. Op

200099 230002 Op -. T , 2 -. Op
120000 060050 -Op -. Op , Op x i -. Op

020099 210002 Op+T — Op , Op -. lB,..
010000 231000 (0) -. Op , lB1 

-. Op

202000 230221 Op — b20 2. , b c  b21 -. Op
200099 230002 Op T , 2 -. Op
120000 060050 -Op -. O p ,  Op x i — Op
020099 210001 Opl-T — 0p, Op — 11

~l

010301 030306 1 -. Op , Op-h -. Op
200999 010306 Op -. P1 , h — Op

0603014 200998 Op x 999 -, Op , Op -. P2
010999 060305 P1 -. Op , Op xy  - Op
200997 010998 Op -. P

3 
, P2 

-. Op

020997 201000 Op+P
3 

-. Op , Op -.

010081 210009 L1 Op , Op -. 1R
9

010050 220008 i — Op , *+l -. lB8
030052 388003 Op-i” — O p , to (1R8+3) if Op = 0
oioa~o 020051 i -. Op ,  (Yp+i’ -. Op

200050 359000 Op — i , to (IR
9
)

000000 999999 no-op , stop

999999 stop

314

--



~~~~~~~~~~~~~~ ~p~~~~~~~~~~~~~~~~~~~ -~~~~~~ ç “5- ’”’ W - V ’ ’ 5 -” ’  
- - -

(Several bugs on pp. 39-40 of [RU 52] needed to be corrected in order

to produce this code, but Rutishauser’s original intent was reasonably
clear. The most common error made by a person who first tries to write

a compiler is to confuse compilation time with object-code time, and

Rutishauser gets the honor of being first to make this error~)

The above code has the interesting property that it is completely
relocatable -- even if we move all instructions up or down by one-half
a word. Careful study of the output shows that index registers were

treated rather awkwardly; but after all, this was 1951, and many

compilers even nowadays produce far more disgraceful code than this.
Rutishauser published. slight extensions of his source language

notation in [RU 551 and. [RU 55’].

~~~~~s C iler.

An Italian graduate student, Corrado B6bm, developed. a c~~ipiler at

the same time and in the same place as Rutishauser, so it is natural to

assume -- as many people have - - that they worked. together. But in fact,

their methods had essentially nothing in common. B~3bm (who was a student

of Eduard. Stiefel ) developed a language, a machine, arid. a translation

method of his own, during the latter part of 195 0, knowing only of

[GV 147] and [ZU 148]; he learned of Ruti shauser ’ s similar interests only

after he had submitted his doctoral dissertation in 1951, and he amended.

the dissertation at that time in order to clarify the differences between

their approaches.

P

35 j
P



- -  ‘ - “ - ~~~~~~~~~ 5-” ”5-~~~~ -~~~~~ - - -~~~~~~~~~ ~~~ .-...-- -‘~~“ 5’-~~~” “~~~~ ~~~~~~~~~~~~ 
- -  - 

-

B~hm ’ s dissertation [BO 52] was especially remarkable because he

not only described a complete compiler, he also defined. that compiler

in its own language ’. And the language was interesting in itself,

because every statement (including input statements, output statements,

and control statements) was a special case of an assignment statement.

Fere is how TPK looks in Bbhm ’s language:

A. Set i = 0 (plus the it ’ — A

base address 100 for 100 - i

the input array a ). B -. it

B. Let a new input a
~ 

be it ’ -. B

given . Increase i by unity, -. 41

and proceed. to C if i > 10 , i±1 -. i

otherwise repeat B . [(i fl (i~.U0)).CJ+[(1 (i FO))~ B] -. it

C. Set i = 10 . It ’ -. C

D. Call x the number a1 , it ’ -. D

and. prepare to calculate U -. x

its square root r (using E -. X

subroutine B ), returning R -. it

to E

E. Calculate f(a
~
) and it ’ -. E

attribute it to y . r ± 5 . 4 i •~ i. 1i  —

If y > 1400, continue [(i fl (y~1400))~FI+[(1 (y 1400)) G] -. it

at F , otherwise at G.

F. Output the actual value it ’ -. F

of I , then the value -.

999 (“too large”). 999 -.

Proceed to H. H — it

36



~ 
-~~~~~~~ - - --~~~~~ --“ 

-5-55 W 
- 

____

p

G. Outiut the actual ~~
‘ G

values uf and y . i ..i~ —

y -.

H — n

H. Decrea:e i by sz i~ :, ,  it ’ —. H

ar.i r- ~ 5-r~ to D if —

i > 0 .  0 1 - ”w -e stoT . { (1 (b0O i ) ).D ]+[ (1f l ( l~ u i)) .O] -. it

Here comments in an a~~roximation to B~hm ’s style appear on the left,

while the ~rcgram itself is on the right. As remarked earlier, ~verv-

thing in Bbhm ’s language ajjear: as an assignment. The statement

“ B — it ‘ means “ go to B “, i.e., set the program counter it to the

value of variable B . The statement “ it ’ — B ‘ means “this is label B”

a loading routine preprocesses the object code, using th~: type of

statement to set the initial value of variable B rather than to store

an instruction in memory . The symb ol “ ? “ stands tor the external

world, hence the statement “ x “ means ‘ in~ut a value and assigu

it to x ” ; the statement “ x -. ? “ means “output the c~irrerit value of x ” .

An arrow “ 4 “ is used. to indicate indirect addressing (restricted to

one level); thus, ‘ ? — 4.1 “ in part B means “read one input into the

location whose value is i ” , namely into a1
B6’nm ’ s machine operated only on nonnegative integers of 114 decimal

digits.  As a consequence , his  operation x : ,  wa: the logician ’ s

subtraction operator,

Ix_y , if x > y ;

x.~y = I~-
L0 , if x < y .

He also used the notation xfly for min (x,y) . Thus it can be v- -r~ : e d

that

Ii , if i > j ;
ifl (i~ .) =

L0 , i~’ i < j
P —

37
P 

1

~ 

4~~~~~ 
- - -



-- -.—::
~
——

~~~ 
-

~~~~~~

-

~~

- - 
-

10 , if i > j ;

i~~~(j:j) =

L1 , if i < 3 .

Because of these identities, the complicated formula at the end of part B
is equivalent to a conditional branch,

C i t , if i > l l e ;
B— . it , if

It is easy to read B~3hm ’s t rogram with these notational conventions

in mind.. Note that part C boe~ n ’t end. with “ D -. i~ 
“
, although it could

have; similarly we could have deleted “ B — it “ after t art A. (B~hm

omitted a redundant go-to stat emer ~t onl y O 1 C ’: ~ out of six chances he

had in [BO 52].)

Part D shows how subroutines are readily handled in his lao~ uage,
although he did not explicitly mention them . Tt’e integer square root
subroutine can be programmed as follows, given the ir~out x and. the

exit location X

R. Set r = O  and t = 2 ° . 0 ’ — R

0 — r
— t

S — n

S. If r+t < x , go to T , it ’ — S

ot h ’- rw ~ se go t o U . r+t ~ x — u

[(1~u).T]-f [(iflu).;1 -4 it

T. Decrease x by rl-t , it ’ -. T

divide r by 2 , increase Y-~r - t  — X

r by t , arid go to V .  r :2+t — r

V — i t

U. L- :- -*i~- r by 2 . it ’ — U

r :2 -. r
V - . it

38

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ . - -  
~~~~~~~~~ ~~~~~~~~~~~~. .— 

- 
--



— ~~~~~~~~~~~~~~~~ ——-- —- - ‘ 
——- 

,
~~~~ - -

V. Divide t by 14 . If t = 0 , 0 ’ — U

exil, otherwise return to S. t:~4
-

~ t

[(i~.t).x]+[(iflt).s] —

(Thi s algorithm is equivalent to the classical iencil-and-p ap er method

for square roots, adatted to binary notation . It was given in harlware-

oriented form as example P9.18 by Zuse in [zU 145, x~ . 1143-159]. To ~rcve

its validity, one can verif y that the following invariant relation s hold
when we reach step C :

t is IT power of 1 4 ;
r is a muj..~.i—1e of 14t ;

r2/14t + x = initial value of x ;

O<x < 2r- 4-14 t

At the conclusion of the algorithm these conditions hold. with t = 1/14

so r is the integer square root and. x is the remainder.)

B6hm’s one-pass comp iler was capable of generating instructionT
rapidly, as the inITut war being read. from paper tape. Unlike Rutiohou:ee,

B~hm recognized operator precedence in his language; for examT ie, r:2+t

was interpreted as (r:2~+t , the d.ivision aicrator
“ : ‘

~aking

precedence over addition . However, S~1mT did not allow p arentheses to be

mixed with precedence relations: If an expres:— ion began with a left
p

parer~tbesis, the expression had to be fully parenthesized even when
associative operators were present; on the other hand if an exvrersion
did not begin with a left parenthesi., precedence was considered but no

parentheses were allowed within it . The complet e ir u ~ ram for his

compiler consisted. of 1114 assignments, broken down as follows :

(i) 59 statements to handle formulas with i~re~theses

(ii) 51 statements to handle formulas with operator precedence

(i ii) 14 statements to decide between (i) and (i i) .

There was also a loading routine, described by 10 assignment s ta i - ioeunto
so the compiler amounted to only 130 -tetements in all, including 2~5

statements w’-i~ch were merely labels (i t ’ -. ...) . Thir brevity is

• especially surprising when we realize that a good deal of the program

3()

55..~. -~ --.-— -‘ —-‘- --‘-5— -- --5----- - —5-. .—.~

-- ~~
------- —-5W—-- —

~~
- — 5 5 — -5 -5- 5-—-—- — —.—--- -.

was devoted solely to checking the input fnr correct syntax; this check

was not complete, however. [It appears to be necessary to add one more

statement in order to fix a bug in hi.~ program, caused. by overlaying

inform ation when a left parenthesis follows an operator symbol; but even
witn this “patch” the compiler is quite elegant.]

Rutishauser’s parsing technique often required order n2 steps to

process a formula of length n . His idea, which we have seen illustrated

above, was to find the leftmost pair of parentheses which have the highest

level, so that they enclose a parenthesis-free formula a , and to compile

the code for “ a -. Pq
“ ; then the sub formula “ (a) “ was simply replaced

by “ P
q

“
~~ q was increased by 1 , and the process was iterated until

no parentheses remained. B~5bm ’s parsing technique, on the other hand,

was of order n , generating instructions in what amounts to a linked
binary tree while the formula was being read in; to some extent, his
algorithm anticipated modern list-processing techniques, which were first

made explicit by Newell, Shaw, and Simon about 1956 (cf. [KN 68, p. 1457]).
Here is a brief indication of how B~hm ’s algorithm would have translated

the statement ((a:(b .’c))-’-((dfle).~f)) — g , assuming that the bug referred

to above had been removed.:

14 _i

-4—— -
~~~~~~~~~~ -~~~~~~~—— ~~~~~~~~~~~~~~---

Current Current Contents of tree (instructions and stack pointers)
partial position

Input instruction in tree (~) (~) (~) (I)

© ©
© ©

a a @3 © D
a: @3 @3

( @3 @3
@3 © a:©,© ©

b . @3 @3 a:©,© ©
c b •c  @3 @3
) @3 @3 a:©,Q b .c—a

© @3 a:@3 —@ b.c -..©

+ @3 + @3 © a: @3 — @3 b.c -.
( @3

@3 ©+@,Co a:© -@3 b.c -~~~Q @3
@3 ©+@3,(~ a:© -@3 b .c-~©© @3

dfl @3 ®+® ,~~ a:© -‘@3 b .c-©© @3
dfle @3 @+@,~~ a:© -@3 b .c-©© @3

@3 ®+®.(~~a:© -.® b .c—©Q dfle- .©

@3 ©+®,©a:@3 -@3 b .c=@3Q dfle- .®

f @3 ~ f @3 @3+ @3, ~ a: @3 -. b . — @3 @3 d ~ e -. @3
) (~j ) @3 + @3, @3 a: @3 — @ 3 b.c — @3 @3 ~f — @3 d n e — (~)) @3 ©+©-.Qa:(3) — ‘@3 b .C -.©® .~f-. ® dfle- .®
- (13 @3 + @3 -.© a: @3 — @3 b.c — (3 @3 .~f -. @3 d fl e -.®

At this point the contents of the tree would be punched out, in reverse

preorder :

d f l e _ ®

b .c -. @3
a: (3-®

and the following symbol “ g “ would evoke the final instruction “ — g

141

.~~~~~~~~~~~~~~~~~~~~~ 



r~~~~~~~~~— ——-~~: 
‘

~~~~ 

-

B~5hm’s compiler assunied that the source code input ~ . ue

literated into numeric form, but in an Italian patent filed in ~~~ he

proposed that it should actually be punched on tape using a r ,i1- -w r.~~~r

with the following keyboard [BO 52’, Fig. 9):

_ _ _ _ _

C

Constants in the source program were to be assigned a variable name and.

input separately.

Of all the authors we shall consider, Böhm was the only one who gave

an argument that his language was universal, i.e., capable of computing

any computable function.

Meanwhile, inE~igland.

Our story so far has introduced us to many firsts, such as the first
algebraic interpreter, the first algorithms for parsing and. code generation,

the first compiler in its own language. Now we come to the first real

compiler, in the sense that it was really implemented arid used; it really
took algebraic statements and translated them into machine language.

The unsung hero of this development was Alick E. Glennie of Fort Haistead,

the Royal Armaments Research Establishment. We may justly say “unsung”

because it is very difficult to deduce from the published literature that

Glennie introduced this system. When Christopher Strachey referred favorably

to it in [ST 52, pp. 146-147], he did not mention Glenriie’s name, and it was

inappropriate for Glennie to single out his own contributions when he co-authored

an article with J. M. Bennett at the time [BG 53, pp. 112-113]. In fact,
there are apparently only two published references to Glennie ’s authorship

of this early compiler; one of these was a somewhat cryptic remark inserted

by an anonymous referee Into a review of B~3hm ’s paper [TA 56] while the
other appeared in a comparatively inaccessible publication [MG 531.

142

-5,’,

p

Glennie called his system AUTOCODE; and it may well have helped to inspire

many other “Autocode” routines, of increasing sophistication, developed
o.uring the late 1950’s. Strachey said that AUTOCODE was beginning to

come into use in September, 1952. The Manchester Mark I machine language

was particularly abstruse -- see [WO 51] for an introduction to its

p complexities, including the intricacies of Teleprinter code (used for

base-32 arithmetic, backwards) -- and its opaqueness may have been why
this particular computer witnessed the world’s first compiler. Glennie

stated his motivations this way, at the beginning of a lecture he

p delivered at Cambridge University in February, 1953:

The difficulty of programming has become the main difficulty

in the use of machines. Aiken has expressed the opinion that the

solution of this difficulty may be sought by building a coding
P machine, and indeed he has constructed one. However it has been

remarked that there is no need to build. a special machine f-or

coding, since the computer itself, being general ~urj o:e, oule

be used. ... To make it easy, one must make coding cor~prc ~rsibl -’.

This may be done only by improving the not at n of prc- ;rairr~ ng.
-

I Present notations have many disadvantages: a.T l u.~e i’ ccT l1 rehen slble

to the novice, they are all different (one for eaci. ruichiris) ar
they are never easy to read. It is quite difficult to deci~h€ :-

coded programmes even with notes, and even if you yourself made

the programme several months ago.
Assuming that the difficulties may be overcome, it is obvious

that the best notation for programmes is the usual mathematical

notation, because it is already known.

Using a familiar notation for progranmüng has very great

advantages, in the elimination of errors in programmes, and. the
simplicity it brings. [GL 52]

P
His reference to Aiken should. be clarified here, especially because

Glennie stated several years later [GL 65] that “I got the concept from
a reported idea of Professor Aiken of Harvard, who proposed that a

machine be built to make code for the Harvard. relay machines. ” Aiken ’

coding machine for the Harvard Mark III was cited also by B~hm

143

P

-,.—~-~ —.-- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—‘ ~~~~~~~ ~~~~~~~~

.‘. -
~~~

5-’ 
~~~~~~~~~

[BO 52, p. 17~]; it is described in [HA 52, pp. 36-38, 229-263, illustrated
on pp. 20, 37, 230]. By pushing appropriate buttons on the console of
this machine, one or more appropriate machine codes would be punched
on tape for the equivalent of three-address instructions such as

-b3 x Ici l -. ai “ or “ l//x9 — rO “ ; there was a column of keys for

selecting the first operand ’ s sign, its letter name, and its (single)

subscript digit, then another column of keys for selecting the Thnction
name, etc. (Incidentally, Heinz Rutishauser is listed as one of the

fifty-six authors of the Harvard re~~ r-t [HA 52]; his visit to America
in 1950 is one of the reasons he and Bdhm did not get together.)

Our TPK algorithm can be expressed in Glennie’s AUTOCODE as follows:

1 c~VA t~ IC ~u~~C y®RC z~~C
2 INTEGERS +5 --‘ C

-t
I. +t TESTA Z

-t

6 E~ TR Y Z

1 SUBROUTINE 6 — z

8 +tt —y —x

+ t x — y - . x
]() +z+cx CLOSE WRITE 1

II a
~ /* b@14A ~~GA d~ OA e@PA f@HA i@VE ~~ME

I
- 12 ThTEGERS +20 —b +10—c +1400-.d +999 -.e +1— f

J~
LOOP iOn

n — x

15 +b-x -.x

1~ X -.q

~~ SUBROUTINE 5 — aq
18 REPEAT n

+c— I

20 LOOP lOu

21 +an SUBROUTINE 1 —y

22 +d-y TESTA Z

1414

—-5-,-,- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

23 +i SUBROUT IN E 3
214 +e SUBROUTINE 14

CONTROL X

26 EN TRY Z
+i SUBROUTINE 3

28 +y SUBROUTINE 14
ENTRY X

+i-f —i

~~ REPEAT n

ENTRY A CONTROL A WRITE 2 START 2

Although this language was much simpler than the Mark I machine code,

it was still very machine-oriented., as we shall see. (Rutishauser and

B6hm had. had a considerable advantage over Glennie in that they had.

designed their own machine code~) Lines 1-10 of this program represent

a subroutine for calculating f(t) ; “ CLOSE WRITE 1 “ on line 10 says

that the preceding lines constitute subroutine number 1. The remaining

lines yield the main program; “ WRIT E 2 START 2 “ on line 32 says that
the preceding lines constitute subroutine number 2, and that execution

starts with number 2.

Let ’ s begin at the beginning of this program and try to give a

play-by-play account of what it means. Line 1 is a storage assignment

for variables c , t , x , y , and z , in terms of absolute machine

locations represented in the beloved Teleprin±cr code. Line 2 assi~~is

the value 5 to c ; like all early compiler-writers, Glennie shied

away from including constants in formulas. Actually his language has

been extended here: he had only the statement “FRACTIONS” for producing

constants between - ~ and ~ , assuming that a certai n radix point

convention was being used on the Manchester machine . Since scaling
— operations were so complicated on that computer, it would be inappropriate

for our purposes to let such considerations mess up or distort the
TPK algorithm; thus the INTEGERS statement (which is quite in keep ing

with the spirit of his language) has been introduced t-s simplify our

exposition.

145



-- --,-,-—— - -~~~~~~ — -----5-, ~~~~~~~~~~~~~~~~ -~~~~ -- .— - —~ - --~-- - .--~~~—r~- 
-- —

Upon entry to subroutine 1, the subroutine’ s argument was in the

machine ’ s lower accumulator ; line ~ assigns it t u  variable t . Liri -~ ~
means “ go to label Z if t is positive “ ; line 5 puts -t in the

accumulator; and. line defines label Z. Thus the net effect of lines

14 thru 6 is to put ~~ into the lower accumulator . Line 1 applies
subroutine 6 (integer square root) to this value, and. stores it in z

On line 8 we compute the product of t by itself; this fills both

upper and lower accumulators, and the upper half (assur~el zero) is

stored in y , the lower half in x . Line 9 is similar, now x

contains t3 . Finally li n e 10 completes the calculation of f ( t )

by leaving z+5x in the accumulator . The “ CLOSE” operator causes the

comtiler to forget the meaning of label Z , but the machine addresses

of variables c , x , y , and. z remain in force.

Line II introduces new storage assignments, and in t articular it

reassigns the addresses of c and. x . hew constant values are defined.

on line 12. Lines i’~ t i i 1~c 1~ constitute the i.nyut b c : , enclosed by

LOOP iOn ... REPEAT n here n denotes one of the index registers

(the famous ~1a~ichester B-lines), the letters k , 1 , n , o , q , r
being reserved for this purpose. Too’~s in Glennie’s language were

always done for decreasing values of the ind ex, u~ to and including 0

and. in our case the loop was performed for n = b , L , i’ , . . . , 2,O

These values are twice what might be cx1ected, because the Mark I

addresses were for half-words. Lines 114 thru 1s~ set index q equal

to 2~ -n ; this needs to be done in stages (first moving i ros. n to

a normal variable, toen doing the arithmetie, and. finally moving the
resu.at to the index variable). The compiler recognized. conversi :ns

between index variables and. normal variables by insisting that all
other algebraic statements begir. with a + or - sign . Line ~~ says

to ctor- t se r~ su.lt of soLroutine 5 (an integer injut subroutine) into

variable aq
Lines 2b thru ~~ comprise the output loop. Again n has the value 2i

so the true value of i has been maintained in parallel with n (see

lines ~~ and ~
Q). Line 21 applies subroutine 1 (namely our subroutine

r calculating r ( t)  ) to a~ arid stores the result in y . Line

-~~~~ — ~~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ - -- -



-5— -5,- --—- --5—-- ,---- -5---

p

branches to label Z if 1400 > y ; line 25 is an unconditional jump

to label X . Line 23 outputs the integer i using subroutine 3, ~~‘d
subroutine 14 in line 214 is assumed to be similar except that a carriage-
return and line-feed are also output. Thus the output is correctly

— ren am ed by lines 22 thru 29.

The operations “ ENTRY A CONTR OL A “ on line 32 define an infinite

loop “ A: go to A “ ; this was the so-called. dynamic stop used to

terminate a computation in those good old. days.

Our analysis of the sample program is now complete. Glennie’s

language was an important step forwar-i, but of course it still remained

very close to the machine itself. !~nd. it was intended for the use of

experienced progransners. As he said at the beginning of the user’s

manual [GL 52’], “The left hand side of the eauation represent s t~~~~

passage of information to the accurssJat r through the adder, subtract:.r,

or mu1tip1~ .~r, while the right hand side rej resents a transfer of the

accumulated result to the store.” The existence of ~~ accumul atcrs

complicated. matters; for ex-~jl , after the rnuitijlication in lines 8
and 2 the upper accumulator w~: cons o-i- - - . relevan t ( is- the -. y ) .  ~~~~
elsewhere only the lower ac:c-snulstor was usel : . The ex~- res:~ on “ 

~- a+bc 
“

meant “load the lower accumulator w i th  a , then add it ~o the double

length product bc “
, while “ +bc-1-a “ me ant -- form the double length

product bc , then add a into the -op -s haP’ of t h e  accumubnt nr ” .
--
~n ressions like +ab+cd + ef were -Jl wnI , but not ~r s-as’ts of thr ee

or more quantities; and. there was n-s provision for p~renth ese~ . The

language was designed to be used. with the ~~-chars ter Tebei-rint-er C L - h - ,

where — was subst tut ed for

We have remarked that Glennie ’s rapers have never been 1ubli shed;

this may be due t s  the fact that his employer: in the British abomi c

weapons project were in the habit of keeping documents ~l~~~ i i t e - O .

Glennie’s work was, however, full of choice quotes, so it is interesting

to re~eat several more remarks he made at the tire:

There are certain other rules for punching that are merely a

matter of coimnon sense , such as not leaving spaces in the r- u I

of words or missjdlling the-rn. T have arrange-I that such accidents

will cause the inj ut programme to exhibit symi tom: of di:trt:-:. 



- ‘~~~~~~~~“ 
- ~~~-~~~~~~~~ ‘ — 

~~~~~~~ 

-

~~~ 
‘
~~~~

This consists af the progr~~ne coming to a stop ant the machine

making no further moves.

[The progra.mnie] is quite long but not e :cessively long, about

750 ord.ers. ... The part that deals with the translation of the
algebraic notation is the most intricate prograimne that I hav e ever
devised ... [but the number of ord.ers required] is a small

fraction of the total, about ltu.

~~~r experience of the use of this method. of 
~ 
rugranring ha:

been rather limited so far, but I have been much impressed by

the speed at which it is possible to make ul. programmes an-i the

certainty of gaining correct programmes. ... The most irn~ art ant
feature, I think, is the ease with whi ch it is ~o::ible to read

back anu mentally check the ~rogr - osme. And. of course on such

feature: as these will the usefulness of this type of r:-yranrJny

be jud ge-I . [21 52]

At the beg inning of the user ’ s manual [21 52’], he mentioned that
“the loss of efficiency (in the sense of the addition al space taken by

routines made with AUTOCODE) is no more thar about 10%.” This remark

appeared. also in [BG 5i, -r . 113], -and it- may well be the source- of the

of t-heard opinion that compilers are “)O~ efficient”.
On the other hand., Glennie’s compiler actually had very little

S angible impact on other users of the Manchester machine. For t h i s  reason ,

Brooker did. not even mention it in his 1959 paper entitled. “The Autocode

r~groms -aeve-loT ed for the Manchester University Computers” [BR 58].
This lack of influence may be due in f art to the fact that (1lennie was

s~t resIdent -at Manchester, but the primary reason was prob ably that his
system did little to solve the really severe rrobbem: that progr anuners
had to face, in those days of small and. unreliable machines. An
haT rove-me-nt in the coding process was not regarded. then a: a breakthrough

of any im~ art -ease , since coding was often th e- simplest i-art -  of a programmer ’s

t -i :k .  When one had to wrestle with problems of num .~r~cal analysis, scaliny,

-and t-w- -level s tora ~ c , meanwhile adapting one’: re-dram to the machine ’:

s-n-rent state of malfunction, coding it self was quite insignific u:t .

148

- - - - - 5



H 4

Thus when Glennie mentioned his system in the discussion following

P [MG 53], it met with a very cool reception. For example, Stanley Gill’s

coimnent reflected the prevailing mood:

It seems advisable to concentrate less on the ability to write,

say
+ a + b + ab -. c

as it is relatively easy for the programmer to write

A a

A b

H a

V b

T c . [MG 53, p. 79]

Nowadays we would say that Gill had missed a vital point, but in 1953
his remark was perfectly true.

Some 13 year: later, Glennie had the following reflections [GL 65]:

[The conpiler] was a successful but TIre-mature experiment.

Two things I believe were wrong: (a) i-b ating-point hardware

had not ai:p eared. This meant that most of a progran-mer ’ s effort

was in scaling his calculation, not in coding. (b) The climate

of thoug}-1t was not right. Machines were too slow and. too small.

It was a programmer’ s delight to squeeze problems into the

srnallesi space.

I recall that automatic coding as a concept was not a novel

concept in the early fifties. Most 1~~ow1edgeable programmers

knew of it, I think. It was a well known possibilPy, like the

possibility of computers ~1ay ing chess or checker~ . ... [Writing

the compiler] was a hobby that I undertook in addition to my

employers’ business:  they learned abou: it afterwards. The

c~ ai iler ... took about three month s of spare time activity to

complete.

249



- - — ~~~~~~~~~~~~~~ - ~
- - - -

~~~~~~
---- - -

~~~~~~ 
- --- —‘--- - - -- - -- - -

~~~~~ 

-

i a riy Anerican ”Comi i l-- r~~.

hon~ of the authors we- hav e- me -r i t ioa ee- so las actually u se - -1 the- we-ru

‘comliler” in connection with what they were doing; the term: we-re

automatic coding, codification automatique, Re-chenjlan fert1 d-nl d . In fact

it is not especially obvious to programmers today why a comp ibor should be

so called. We can understand this best by considering briefly the other

types of programming aids that were in use during those early days.

The first important programming tools to be developed wer :, of course-,

gor~oral-p urpose subroutines for such commonly needed yr000ss- :: as

Pu ut-output conversions, floating-point arithmetic, and transcendental

fur,ctt -n: . e-~i--e a library of such subroutines had been construc~ e l , 50

was time to think of further ways to simplify programming, and two

principal Peas emerged : (a) Coding in machine language could be made

less r~giI, by-u si ng block: of relocatable addresses [‘mi 5 0) . This idea a

was extended by 4. V . Wilkes to the notion of an “assembly routine-” , able
to sombine a number of subroutines and to allocate storage [WW ~I, p . 2 7- 52] ;

and Biis~: later [WI 52, WI 53] extended the concei t l OSt}l ’L S to include--

general symbolic addresses (i.e., not simply relative t a a small number of

origins). 2or many years these were called “floating addresses ” . Similar

o-:ar eio 1 m ent s in assembly system : occurred in America and elsewhere;

aS. [BO 52]. (b) An artificial machine language or 1se-odo-code was
devised , usually providing easy facilities for floating-point arithmetP

as if it had been built into the hardware. An “intc- riretive rout ine ”

(s a m e - t imes called ‘ ir-~ erpretative ” in those day s) waubu t a - - s o s : these

n.:±. r-ortions , emulating the h~ othe -t cal cum~ u t - - a - . The first intern se -- a ly e -
r ou t i n e - : au eared in prograimaing ’ s f i r st t ext :- :-ee , by W I 1 k e T , iSl e- ~~ C ,

and Gi l l [WW -1 , pp 3t_ 37 , 7 14 _ ~i7 , 1- 2-1 h] ; the- rir~ar’~ aim at this book

Wa : te - re-se-nt a l ibr amy of subroutines and the methodology of their use.

Short ly afterwards a refined interpretive routin-a for floa4 HG-t aint

raal aulation ~a.
- -ue - ’:cr bed by Brooker and ~~~ -ler [BW 53], including t he

atM
~~
‘ :- far se-s rout tncs no-. ted ta any dej tb . Int tn re - k ive rout m e : in

their rror- ~n-, Par comi act form were introduced by - ‘ . V . Benn et t (c f .

[WW 51, I-refa ce and p . 1-b-li dl, [B? 52fl; tb - - most influential was

I--rh aj : John Backus ’: iBM 701 C~eedcoding System [BA 5t , BH 524]. As we-
ha-i - already ~- - s -u r ~ , ~hort Code was a d i t t e - r e n t sort- of inter1~ret i ve

Ii. -
-

- - - _
~ ‘~~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
- -5PI - - 

~~~~~~~~~~~~ _ -~~~~ - —-----i’
~~

_

—

~~

-----—--‘----‘---5 -- - -

~~

-—- - ‘ - 5 -—-- —- ------ -‘

~

-.--- ,-‘-—--

~~~~~~~~~~~~~

-

N - . The- - art,: history of library subrout~ :. as:erne-iy ~- u N -

and inte-ra retive rout ine:  remains to be written; we- have- 5 - a r t  revi ‘r n

it- brie-fly here in order to but the programming language--  —se -ve - lopmen t

hat o context .
During the latter part of 195 1, Grace Murra , - j u r i e s  J e - - e - e --~~~OT ee- S u e-

idea that l s-: ScaiO-codes need not be m e-TIre-ta a , they ccu~ a also be

exIanue-tI out into direct machine language instruct ia-m s. She ant h-a r

assec ia tes  -at ~JN iVAC proceeded to construct an cxl e-ris -rN ml r:g:am

which wo sli do such a translation, and th ey call- -u it a ‘ 1 :  r~ a~ in J .

To coru; lie means to compose out of materia l s  from otne-r iocwae -mt

There tar-a , the compiler method of automatIc p.rograsJ: l:g c-coat sas

of assembling and organizing a program frost a r e-groat .: ar rou t in e - :

or in gas  oral from sequences of corn: ut e r  code ~ Gch have- been

ma-c e- up previously. [N - -I 51 , . 15]

(se-c also [H O 55 , p.  22] .  ) The f i r st “ compiler” in t h i s se-nse, n-use- 1— - ,

was in a; - - r a t i o n  in the :~ ring of 19~ ; , when Y r.  Hop -n- 2b o~ O on lb

subject  at the fi r s t  ACM National  Cun s’ -ar e- -n c e [HO 5 2 ] .  Inc - n - ota_ a~ :; ,

‘1. V. i~~1~ - :s c aine uu with a very similar ide-a , and :aote-a it toe n a e t h : d  of

“ ymthe tic  cr1-ar: ’ [Wi  52] ;  we would now call th i s -  a macro - -; - a - -u : :  011.

The ~~~~~~ “ co -na i l e r ” was improved to A-l (January, l95~~) and then

to A-S (August, l~ 53) ~ the original iml 1e-m-:ntor s were Bichard h. Ridge-wa::

and Mare-ar- - f a .  Bar; ~-r .  Quite a f e w  r e - f - - a r e -nc- : to A-2 have a;-aeared in

th e  1i~ ‘ - no a Oa ’~~
t of those days [tB — :  -H .  HO 53, HO 53’ , -1~ 5L , WA 5d ] ,  but

tn e se  auth -a r’s gay -rn no examples of the language i tself .  There-for-: it ~N ll

be he -I1 f-al to d isc uss here the s ta te  of A-2 as it exi sted late in i - I - ,

vt - a i t  watt first released to UNIVAC customers for t e st in g  E RR 53] . A:

we- w i l l  se -
‘ 

the language was iuite pr imit ive  by comparison with  those

w’- have been s udying, and this  is why wa choose to credit Glennie with

tb-a f i r st , u-ant ; Nt --s although A-I was completed first; yet it is important
t r n , ancl-arst-an cl what was called a “ compiler ” in 1 0 , in cia - n ’ to ap reciat -:

t h e -  h i s t o r i c a l  develoa -rne r it  of progr amming languages.

Here is how TPK would hav e- looked in A- ; at the a~ -i : t  l -t5~~:

51



- - -- --- ----, —.--——--,- ----  ~~~~~~~~~~~~~~~ ‘ r - ~ ,-------’-’--- -,~~~ - -—, —------
~~~~ ~~~~~~~~~~~~~~~~~ “ 

~
T’
~

—- —‘- -- — —

~

- -—--
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - - -—,-,,-.---- -‘—

Ut of vat-nh g

00 02 01+ 06 08 10 12 14 to 34 36 38 40 42 - 58
10 5 4oo -i 4 3 a0 to a10 i y,y’,y’~ t,t’,t” t arn:, storage

I roar am

0. Gt-II -~O0 000002 Read input and necessary constants from T2
17 -21-51 WS.000

SBR\-212 BLOCKA

IWO-O Dd 000000

1. ,T- -N-- . -000001

-OT-- ilSGt 02071: 1-3 . = i

1RGG--OC 101011

2. ~ too~d 535 .- dY = t

3. RNAOS-O 11-001+0 5/, =

4. ;e-s ;-- s4 -012-03-9 aj . = y

5. A~-1- oOP- 038038 5 y =  ;, “

6. AAOO4O 158050- t’+y’ =

7. AbC-I -Id 03801+0 SHa-y ” = t’~

8. ~::..c :  DEAOO3

KOO -500 1(00000

F00912 IOO1RG if t” > 0, go on to Op. 10

000000 G~D31CN

1R000u oo8o24o

1CV1HY, 000010

~ G~~1O-I0 tftb 0Nl

000188 -123253 ‘ tMTOO ~LARGE ulL~3A1 MAMA ’ =

1RG000 009000

13. ~T ’ 6 038000 Print :, -
~~

--‘

‘P. G~-~-S5 - :arn 000001

-00-0195 200220 ~--iovc 20 words from wSi1+ to ws4o

1RG000 011000

52 

--~~~~~~



- -~~~~~~~ -~~~~~~~~~~- -- - -~~~~~~

p

12. 0~-T1u N 000001

000222 2 i-il~’ Vie-c 20 words from ws4o to Will’:
1HGC-O-D 012000

13. ALl~ 12 F000TI

1RG000 013036 Replace i by i+ (-1) and go to Op. 2

2R0000 000037 if i ~ -1 , otherwise go to Op. 14

3RG000 000006

SR -3 000007

5R0000 0DD00~

cRG000 1- 0-3007

101-00-5 000002

2C N - D C a D oocoi4
1RS000 000036

2RS000 000037

lb . OWN iCO 7210-02
81-970-Ot 820000 Rewind taper 1 and 0. and halt .
-t~~~~QQQ 900000

1BG000 015-3-90

to;:-: I

There were- ~
‘aD words of worki ng storage, and each floating-ae-irt- nujiber

used tw a -  words . These working storages were usually addressed by nomber:
00, 02 , ... , 58 , ex-ce1-t in the ~~~ instruction (move generator) ~ aea

the-c wer’:- -nodressed by 180 ,182 , ... , 255- a-e-s;:cctive-ly; see operations

5 , 5, U, and 12. Price there was no r - : ’sion for absolute volu~~~
ole-r at i on s 2 and 3 of this program find 5~~a10~ by computing ~~~~
(The A-2 corny i l ar  would replace most o; Pars  by a fully cxl axiaed ::hreNt -

in line; this ::ut r - : u t - l n e -  would be cop ied anew each time it was requeste-:.

unless it wa~s one of the four basic floating-point ar it hmet ic  operations.)
Since tNt-re- was no jrovision for subscripted vari nihi - . operations 11

and 17 shi ft , the art-a;; elements at0 or each iterati cit . 

t hrsetic instru ctions were :;ecified with a three-address 

1-a , as she-wa: in c-~ e-r-N ion s 2 tI-iru 7 . But at thi s point in the development 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~-


of ~-2 there Wa: no waor to test the relation > “ wt t i i ou t L - - r n l e-5t. I

to machine language -- only a test for equality was built in -- so

operat ion B specifies the necessary UNIVAC instructions. (The first

word in operation 8 says that the following 003 lines cot’st-sin LJNIVAO

code. Those three lines extract (E) the sign of the first numeric

argument (1RG) using a system constant in location 912 , and it it

was losotive they instruct the machine to go to program operator 1Ci

The next tv-s lines say that IRG is to be t” (working storage SO),
ama that 1CN is to be the address of operation 10. The “ 008 ” in ttie-

iWO specification tells the compiler that this is operation -i; such

redundant information was checked at compile time. Note that the

c nsai ’ile r would substitute ai.-a ro: ria te addresses for 1RG and 102
I

- in the machine language instructions. SInce there was no notation

f-ar “ 1RG + 1 “, the programmer had to supply ten different parameter

lines in operat ion 13.

Ic,’ 1955, A-i: had become more streamlined, and the necessity for

IWO CODE ifl the above program had disappeared; see [IR 55] for a des:-r i ; t i ons

-as A-2 cooing, vIn tage- 1955. (Another paper Em 55] also m il e -a s -eu at that t ime ,

presenting a b a same exarr.ile program.) Operations 7 and the following of

the above :- -agran coul d now be replaced by

7. Q2005-t oo1+ooo To Op. 9 if y” > 400

101::: 000009

B. aiTKOSd 038000 Go to Op . 10

lCuiJC : -59001:1:

~~~
. ~woOo9 001038 -

ia. YTCYJ~- 038000

11. n4y (y 5l 5  010040

12. 9 - - - - ‘Jl00l~
l~ . gAI~~-i’ oo6oo6 Same meaning as before, but new simtax .

1CN000 000002

5 (t~ a-I a 000015

j i- . e-i~. II ;O. 000000

51J11J2 0 DIrI GL. - ‘I

54



— ‘~~~~~~~~~~~~~~~ ‘ ‘ f l  .-.n~~~ 
,y r ~ “~~ ~~~~~~~~~~~~~~~~~~~~~~~ r r~-.~r--.-~n r - - — ‘----~~~~“~ ~~— .----“r~’w W~~~~~~~~~ ’.’~~~~~~~~ ””~~~~~ ’ -

Laming and Zierler.

Grace Hopper was particularly active as a spokesperson for
automatic programming during the 1950’ s; she went barnstorming

throughout the country, significantly helping to accelerate the

rate of progress. One of the most important things she

accomplished was to help organize two key symposia on the topic, in

1954 and 195n., under the sponsorship of the Office of Naval Research.

These symposia brought together many people and ideas at an important
time . (On the other hand, it must be remarked that the contributions
of Zuse, curry, Burks, Mauchly, B~hni, and Glennie were not mentioned at either

symposium, and Rutishauser’s work was cited only once -- not quite
accurately [GO 54, p. 76]. Communication was not rampant’.)

In retrospect, the biggest event of the 1954 symposium on automatic

programming was the announcement of a system that J. Halcombe Laning, Jr. and
Niel Zierler had recently implemented for the Whirlwind computer at M.I .T.
However, the significance of that announcement is not especially evident

from the published proceedings [NA 524-], 97% of which are devoted to
enthusiastic descriptions of assemblers, interpreters, and 1954-style

“compilers”. We know of the impact mainly from Grace Hopper ’s introductory

remarks at the 195 6 symposium, discussing the past two years of progress:

A description of Laming and Zierler ’s system of algebraic

* pseudocoding for the Whirlwind computer led to the development

of Boeing’s BACAIC for the 701, FORTRAN for the 704, AT-3 for

the Univac, and the Purdu e System for the Dat otron and. indicated

the need for far more effort in the area of algebraic translators.

[HO 56]

A clue to the importance of Laming and Zierler ’s contribution can also

be found in the closing pages of a paper by John Backus and Harlan Herrick
at the 1954 symposium. After describing IBM 701 Speedcoding and the

tradeoffs between interpreters and “compilers”, they concluded by

speculat ing about the future of automatic programming:

•

55
•



~~~~~~~~~~~~~~ ,~r,~~’,v’’ ~~~~- ‘ “~~ ~~~~~~~~~~~~ 
.‘

~~~~~
“, 

~~~
‘_ “‘~~‘ W ” ~~~~~~~~~~~~ 1 ‘

“~ ‘‘ “ ‘

A programmer mi ght not be considered too unreasonable if he

were willing only to produce the formulas for the numerical

solution of his problem, and perhaps a plan showing how the

data was to be moved from one storage hierarchy to anoth ar,
and then demand that the machine produce the results fur his

problem . No doubt if he were too insistent next week about

this sort of thing he would be subject to psychiatric

observation. However, next year he might be taken more

seriously. [BH 54]

After listing numerous advantages of high-level languages, they said:

“Whether such an elaborate automatic-programming system is possible

or feasible has yet to be determined.” As we will soon see, the system

of Laming and Zierler proved that such a system is indeed possible.

Brief mention of their system was made by Charles Adams at the

symposium [AL 54]; but the full user’s manual [LZ 54] ought to be
reprinted some day because their language went so far beyond what had

— been implemented before. The programmer no longer needed to know much

— about the computer at all, and the user ’ s manual was (for the first time)

addressed to a complete novice. Here is how TPK would look in their

system:

1 v~N= (input),

2 i=0,

3 1 j=i+l,

a~i v ~j,

6 e=i-lO.5,

1 C P 1,
8 i =l0,

9 2 y = F
1
(~~~(aji))+5(aLi)

3,

10 e =y-I400,

II CP 3,
12 z=999,

U PR INT i, z.

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

14 S P4 ,

15 3 PRfl~T i,y.

— 16- 4 i=i - l,

e=~-O.5-i,

18 C P 2 ,

19 STOP

The program was typed on a Flexowr iter which punched paper tape

and had a fairly large character set (including both upper and lower

case letters); at M.I.T. they also had superscript digits ~~~~~~~~
and a vertical line . The language used the vertical line to

indicate subscripts ; thus the “ 5(ali)3 “ on line 2 means 5a~
A programmer would insert his eleven input values for the TPK

algorithm into the place shown on line 1; then they would be converted

to binary notation and stored on the ma~ aetic drum as variables

v1, v2, .. ., v11 . If the numbers had a simple arithmetic pattern, an

abbreviation could also be used; e.g.,

p Y I N = i (.5) 2 (.25) 3.5 (1) 5.5

would set (v1,..., v11) — (l , l.5 , 2 , 2.25 , 2.5 , 2 . 7 5, 3 , 3 . 2 5 , 3 . 5 , 4 . 5 , 5 . 5) .

If desired, a special code could be punched on the Flexowriter tape in
— line 1, allowing the operator to substitute a data tape at that point

b before reading in the rest of the source program .

Lines 2 thru.
~

are a loop which moves the variables v1, . . ., v11 from

the drum to variables a0, . . .,a10 in core. (All variables were in core

unless specifically assigned to the drum by an ASSIGN or IN instruction.

This was an advanced feature of the system not needed in small problems.)

The only thing that isn ’t self-explanatory about lines 2 thru
~

is line 1;
CP k, “ means “if the last expression computed was negative, go to the

— instruction labeled k” .

In line 2 ’ F
1 denotes square root and F11 denotes absolute value.

In line 14, “ SP “ denotes an unconditional jump. (cp and SP were the
standard mnemonics for jumps in Whirlwind machine language.) Thus , except

for control stat ements -- for which there was no pvi sting math ematical

convention -- Laming and Zierler ’s notation was quite easy to read.

57

- _ _-~~~~~~~~~

~~ pr ~~~~~~~~~~~~~~
‘
~~
‘
~~~~~~~~

--

Their expressions featured normal operator precedence, as well as

implied multiplication and exponentiation ; and they even included a

built-in Runge - Kutta mechanism for integrating a system of differential

equations if the programmer wrote formulas such as

Dx = y  + 1,

D y =  -x,

where D stands for d./ dt Another innovation, designed to help

d- . ugging, was to execute statement number 100 after any arithmetic

error message, if 100 was a PRINT stat ement.

According to ELM 70], Laming f i rst  wrote a prototype algebraic

r a m s laL o r  in the summer of 1952. He and Zierler had extended it to a

usable syste-n:  by May, 1953, when the Whirlwind had only 1024 16-bit

wor m of a.. r-: memory in addition to its drum. The version described in

[LZ a S] u~~l ze-O 2048 word.s and drum, but earlier compromises due to

such exta’--me cor e l imitat ions cau sed it t o be quite slow. The source

-sod~: wa rari a l a t u d  into blocks of subroutine calls, stored on the drum,

and mO t e -n  being t r an s fe r r ed  to core storage (one equation ’ s worth at a 

- - )  thcse  subreutines invoked the standard floating-point interpretive

rou t Ines  on the whirlwind.

The use of a small number of standard closed subroutines has

certain advantages of logical simplicity; however, it also often

results in the execution of numerous unnecessary operations.

This fact, plus the frequent reference to the drum required in

calling in equations, results in a reduction of computing speed

of the order of magnitude of ten to one from an efficient computer

program. [AL 54, p. 64]

From a practical standpoint, those were damning words. Laming recalled,

eleven years later, that

This was in the day s when machine time was king, and people- time

was worthless (particularly since I was not even on the Whirlwind

staff). ... [The program] did perhaps pay for itself a few times
when a complex problem required solutions with a twenty-four

hour deadline. [LA 65]

58

-  ~~~- - -
~~~~~


- — ——--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— ‘- --

~~~~~~
.- —‘—- —

In a r- c-.-at s’:ur-cii u t  h~ s file - , Laning foun d a l L s t~ rig of the-

Whirlwind comi- iler ’ s fIrst substantial ai:sUcation :

The a r - 5 - i- -c: addressed is taut of a ‘ :e - - — a  I mona  lunal  1e-a-I

i-ureuit cour se-  ~1own by one aircraft  at tacking ancth:-r, in cluding

the  f i r - a  control equations. What make s this ler:er:ali . : In t eres t ing
— to me is t i - a d in with the-  fact that for roughly five- years 1 rc-vious

to this tic-:- th e- [II I.T. Inst rum -eat  ation ] Lab had manag~-d and

ojearat - the O . I . T .  Rockefeller Uf’1er-:r~ lad Ax~ai::a-:a- with the

Ir in c - i la l  orj ose of ’ solving this general salas~ of a

tJnfor’~ : a aaa ~ -ale; , the :uid thre -- c :s ar :s i o n al  ~ 
s-ohieas required inur e-

in t eOl -m a - -v s  than l~~e RIA io s ~~es - .

~~ cuil7mgu -.-: wh- formulat  H the yrob lem w e - r e -  -a r:: ~k-a 1 t: cal

that it could be solved Ira an:-; c- as onable a e. I- . - 
- - a .  As a ahualoras-

- 
. 

Zierler and I sat down with  them in a s-i~ ? hour coding sessIon ,

at least  half of which was spent in defining ootat thc . The tare

was j a b - -c , nra a with the usual beginner ’ s luck it ran successfully

the- first tirne Although we a- ~vor seriously cap IIalli:ed on thi s

capabilit:;, for reasons of cost and. coras ut er  a-;ailahilit y, my own
P e-go -a n  -saul :: never before or since received such a boost . [ LA 7 t ]

The 1-:sad-a ursuOt source program consisted of 70 stat- - a  -
, including 29

which mere-i;  ass Ign -c d init ial  data values, and also including seven Use-s

of the d i f f e r e n t i a l  e-slua± ion  feature.

Laa:h ‘inscribes his original parsing e-:hau ique as follows :

Sa~ ted am y - -a H - - s ea :  were handled by a s-eau-:ao ae of cne-rat c I

branch ins t ruct  e r a  ( say ) .  a~ a on- a— i ns s operaU on t :ae -~~aahoIs

w e’- - re-ad and code generated a symbol at- a f I r s - : :  t b -  actual

execution a-c - -l a a r a c :  as~ -0 i n — l i n e  c j  orders to hoj about ~‘r ona

one- point tao another. The code used son- n r:aJ ’-:- n i -: n’- ~ - e - k : ,

but . wa: su f f i ci e n t l y  r t r ~ e~J that 1 f .I dn ‘t wa’h rstau :d it ~~Hiou~
- oct ron. - - 0000’an t r at  era even wt:- ar : I wrot e-  ~1 t. . . . t -r aa c tared ~-rogrsaa- -

were riot known ira l°,3~
The ci ion ot oj at or  r - -redence as a r o y c e  coneey t did ncd

oc cur -  t o r i- -at t h e  l 1 r ~c ; I live-i  in fear that sorn’aon~ w e - I  I wr .i t--
a a r 5 - -t ly r -:a: - craaO le ul~”.’br~i I c -xj re-n on that ray cy s t  n:- would
not anal ~~cc - c - r n - : :  a , I LA ~ r - J

5- )

-~~~~~~~~~~



i lans for a much cxi ur i n e-I  ,-1.i alam O co :- 1 31cr w-~- ~‘- : -Ji’u~ ~nd when the

IL I .T. ln st r u a n e : t a a t i o n  Lab acquire--i i ts  e-aa~ c oni at e-i ’, an lB1-~- e-~

ar ia  r ag aaa -l hi .: c e--ll :agues I niIi~ C. liasakire: ares Charles P. Ae-rner

devn loy ed a compiler called NAC for this machine in 1957 and l95~~.

Although MAC falls out of the time period cover-cal by our s’cory, it

des- -a-yes brief mention b - a r :  because of its unusual three-line format

pr ’qoccd~ by I:. H. Battin a . 195- , somewh at like--  Zuse ’ aa or iginal  language.

sor - -aural lee, tI le -  ct o a cue -a.a

El 3

I-I Y = .3SJ3’J](ABs(A ) )  + 5 A

1±1 1+1

v:-ad a be p orsche-I on three cur -a s .  Although th i s language ha: not become

wi-only koanwn. it asa very successful local-,- : NA-C c era ilc.r’s were l a t e r

c avnloy- : i  fo r  use- wito 1 111 ~~~~~ : .: - , 7090 and 5c0 computers , as well as
tnc  bo:l -e-3we -ll j- iBoo and, 111600 arid the CDc - - a . (Ccc [LM 7 0 ] . )  “ At

re -sen t  t ime [le’7 ], 311,0 and FORTRAN have about equal us e -  at : 111— I, ”

ace-sr-rIng to [LA 7 u ]  : a - ire -  CSDL rale - ara s . 1. bra s-er a la -urnS  ~ “:: , th-c

succe :er  to h . I . T .  Instr-omentatie-u Lab .

lint W-: had b ut t e r  get back t e -  our stir :,’ of tb-  t - aai’ ly  days.

3k-T Old,

D u r i n g  the f i rs t  , of l95S, John bactau s began to assemble a group

St S cul l-: wI th Ira 121-1 u work on in-j -ro vc d ra ys S eros or tul  anus-i a : r -r ogr-a .’ a :o 1 _I

(see [BA 7 - ] ) .  Shortly after learning of the Laming and Zierler system

at the - ONR meet ing  in 1-Ia:1 , Backu s wrote to Laming C-hat “ our formulat i en

of the i roCl-am is v-sr-- sinilar to :our a- : owe- -a - -n , we have done no

a r e - a - a- - - eu. ing or -even Je-~ a 1:0 ~-1aaning. ” ~~ i th Ira two we€ ha - , Backus an I b i s

-:n- :- ;urkea’s aar’Lan li : r ’ r - :ck  and 3 r v ’ ra ~’ 3 11cr via f l ed .1. . in order to - ce

tb-a alr :  ci: H a r t - e r  :ys~ en in q - r a t i o n .  The l i c ~ i - r c t - i -m facing t Ile -i:: ~~s

t ’ i ra.~ i~ - - a s -  a n t . s i s ’ : ,  a language ~~ th , :ui tab lu e tb el c oy .



- -.--.~~~.-.-,, r-~~~’fl ~~~” -- ______________ ~~~~, “ “ ‘ ‘ r’~~~~ ’ —’—~~~~’r’ 
—‘,~~

-- ‘- a —
~

---- ‘--- -
~~~ — ~~~~ ~~~~~~~~~~~~~~~~~ -r . -~~~~~“~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ ‘ a

At that 11::- . anoast rogranmers wrote symbolic machine-

instruction s e x cl u si v e- i ,’ (some even u. -a absolute octal or
p decimal machine i’~ r uet i o n s) . Almost to a :: 5e- , they firmly

believed that any,— mechanical coding method would foil to san

that versatile ingenuity wh i ch each prograrr~ner felt he possessed

and con starrt l~; needed in hi: work. Tu e - r u t urn, it was ao;ru~ i,

- ~ car ts 31cr: - could cmi ,- turn out code which would be ira t e] -roil --

less o f : ‘acient than human coding (intolerable, that Is , unless

that ‘ ran 51 - - a :nc7- could be buried under larger, but desirabl~ ,

inn f fic e - : i c i e s such as Sb-: - progr~~~~ed ~lo atang—: C l Ot arIthmetic

usually r e - l o ir e - - s t h e n) .

[Le a- -a ’:vcloj c:- -r a ~ grow] had one primary fear . After working

b rats sea-al hard to i ro duce- a good translator II -rograssa , an in-, ortaiit

an fh t a r -e-r:i ltL :-; turn up wh i ch would confirm the vi ew:

of the seer-I cc : ... its o h - I - n t program would run at half the

spec-I of a : - e : a - a a a - J s - e r c f c r a . It was felt that such an occurrence,

or se-viral of - a - - c : , a-stoic almost :omi iets-l:,- block acceptance of
t-ia sy aat- a s . [BH -- i - a]

V
By fi-avemb-er of 1-5)- , Backus’: group had specified “The lfat-i I-Iat-h -nsai - cal

F0~~nula TRANslating s~:~~~’ an , FORTRAN ”. (Almost all the - languages we shall

cu -cuss f r o m now on had acronym: : .) The f i r s t I aragraj h of a b e i r r a y o r ~

[lB 5~
] - c a h u s i z e s that p r - a v t o u s systems had offered the choice of easy

coding and slow execution or laborious coding and far t ex ecution , but

F -13TE~ J w o J r pr o v i d e t b - best of buti~ we-i-li:. It also p laice-s sa cciti c

-:myhasir ; on the TOt-I ~~ r:iachir,e inIe -~ ende-nC a was not a r aary goal,

although a concise mathematical notation “wh’1c -~ Jot -s not resemble a machine

language” war - d e f i ni t e l y ‘ -onul c l - a r - a l important . i-’urthernaore they s t - J u l

that “ each f a St ra- IBM cairulati r- sh u a r i d have a system s iclia r ’ to FORTRAN

a’:c eas anvrn f ii .”

It is felt that F0}ITRAI3 offers as -u n v e - n i e r i t - a language for rta1 Inc

a r -aI .b ms for machine - , , L i a l i v - a:: L a now known. ... After an h o a r -

- i t I ~liTJ AI ; r i o t 1 i : , t~l a - average r-rntr trIm’ r can fully under—

stan d tb- a - t ej s of a r e - - j a r - - si - at t ’-d in FORTRAN langar - ag- - wi t - l a - n t

Siil J aliitjonal , comments . [TB ~I~]

hi

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

They went- on to describe the considerable economic advantage-a: us

prograzmning in such a language.

Perhaps the reader thinks he knows FORTRAN already; it is c -er La i a t:;

the -  earliest high-level language that is still in use. However , few

people have seen the original l951~ version of FORTRAN, so it is

instructive to study TPK as it might have been expressed in “FORTRAN 0” :

1 DIMENSION A(il)

2 READ A

3 2 DO 3, 3,11 J=l,ll
1~ 3 I= ll-J

5 Y=SQ~T(ABS(A(T+ifl)+5*A(I+l)**3

6 IF (1400. >=Y) 5,14

7 14 PRINT 1,999.
8 GO TO 2

8 PREiT T,Y

10 II STOP

The READ and PR INT statemen t s do not ment ion any Fa .:Rt-IATs , although an

- :xt enn ion to format sr ecification was contemp late-i [p. 2 6 ] ;  a r’ograsaa’-a~:r-

defined function s were also under consideration [a. 271. The DO satat- s am a . t

in line 3 mean:, “Do stat ements 3 thru 8 and then go to 11” ; the

abbreviation “ DO 8 J=l,U “ was also allowed at that 3- l ac e- , but the

original general form is shown here for fun . 1-lote that the IF stat ement

wa—a originally only a two-way branch (line ~): the relation could be =

> , or > =  • On line 5 we note that- functicn n ames need not end in F

they  were required to be at least three characters long, and there was

no maximum limit (except that ‘axi r e ssio n :  could not be longer than 750 a

characters). Conversely, the names of variables a-crc restricted to be

at most two characters long at this time ; but this iii itself was an
I s ar e a v a t i o n , FORTRAN being the f i r s t  language- in which  a variable ’ s

nani~ could be larger than one 1- t ic -a- , on t ra try  te- establ ished

mathematical conventions. Note t h a t -  mixed m o-ic ar i thmetic

-
- n

L _ _- - -



was allowed, the compiler was going to convert “ 5 ”  to “ 5 .0” in lin e 5 .

A final curiosity about this program is the GO TO statement on line 8;
this did not begin the DO loop all over again, it merely initiated the

next iteration.

Several things besides mixed-mode arithmetic were allowed ira FORTRA1~ 0

p but withdrawn during implementation, notably (a) subscripted subscripts

to one level, such as A(M (I,J),b (K,L)) were allowed; (b) subscripts

of the form N*I+J were allowed, provided that at least two of the

variables N , I , J were declared to be “relatively constant” (i.e.,

• 
isa fr e -~uent 1y changing); (c) a RELAB IIL statement was intended to pervert-:

array indices cyclically without physically moving the array in storage.

For example, “ RELABEL A( 3) “ was to be like setting
(A(l~,A(

25 ,A(3I , . . .,A(n)) (A(3), . . .,A(n),A(l),A (2))
Iaacicient all’,’, stat ements were called formulas throughout the 195 14

ac amemS ; ther’-a were aritacuietic formulas, DO formulas, GO TO formulas,

etc. 0 Trail -ar terminology had been used by B 5hm, while Laming and

I i-  -n cr and Glennie spoke of “ equations” ; Grace Hopper called them

‘ operations” . Fue ’th -a rmore , the word “ compiler” is never used in [lB 514];
there  is a FORTRAN language and a FORTRAN system, but not a FOR TRAN

C e-ra p iber .

The 000TRAN 0 document represents the f i rs t  attempt to define the

syn t ax of a regraran n-r ian,-suage- ri gorously ; Backus ’s important not ati ce-a

[hA 59] w h i c h  eventually became “ BNF ” [EN ‘ L ]  can be seen in embryonic

5:- rn here .

W1~I. the  Fb i -IRA N language defined, it “only” remained to imp lement-

tb ’a syst em . Ft is clear I ran reading [lB 514] that considerable plans
had already beer : made towards the iaaap leme-na t at iaa r a ; however , the full job

took 2 . nor- - years (18 :-sea- :;--sar :), so we shall leave the IBM group at

work while we consider c faher developments.

L-rooker ’s Autocode.

Back in  b- land - a: 1 er, R. A . Brooker introduced a new t~~e of Autocode for

the Mark I machine. This language -wa s much “cleaner” than Glennie ’ s ,

be n~ nearly —su ch, a:- - - n b a  endent and using a r- gracaarsc -i floating-point F

an ’ sa m - a ’ -
‘ but 3 t  all -we-I only uri c- ca l er o t i  a n  per  Li a - - , a r -  were few

‘3

--~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘ ~~~~~
~-



::ure-naonic name:. and there was no way for a user to define subroutines.

The tlrse p lau s for this language, as of March 195 14, appeared in [BR 55],
and the language eventually implemented [BR 5r , pp~. 155-157] was almost

t h e  same-. Brooker ’ s emphasis on economy of description was especially

o -
- - -we -rt i :;: “EL ir. the author aimed at was two sides of a foolscap sheet

w :th . ;o a s i t - l y  a t h I r d  side to describe an example.” [BR 55]
i’h:-a floas ’ ng-r oint variables in Brooker ’ s Mark I Autocode are called

: 1 . -: . ... arab t h e -  b r i r . e g~ir variables -- which may be used also as

ind ices  (s u b s c a ’i r t : )  -- ar-i called nrl , n2 The Autocode for TPK is

Fly readable with only a few auxiliary conmrents , given the memory

~~s~~~ oacnt :  a1 = v i+~~
, y = v

~~~
, i = n 2 :

1 nl= 1 sets n
1 =l

vnl = I reads input into v
n

ni = nl+l

51, 11
~

ni jumps to 1 if n
1 < 11

nl = U

2 . n2 = ni-i print s i = n1-l

vl2 = vnl
j 3, v12 - 0 .0

v12 = O•O-vl2 sets V12 = jv12 I
3 vl2 = Fl (v12) (v

12 = ~f f T ~~)

vl3 ~~~~~~
v13 = vnl ae- v13
v13 = vnl y vl3 ~v13

= 5 a~)
v12 = vl2 + vl3 (y = f (a.)) :

-

j J ., vl2 >

v12 = v12 print s y

is
14 . v12 = 09°. - prints 999
5 nl = nl-l

- ~~~, nl > 0 tests for last cycle
H halt

(jl) starts programme

~

-~

- .

~~~~~~~~~~~~~~

The firsal instruction i l lus t ra te-s  an i r a t e - r e s t i n g  Fnra a- - ctL r :; An

instruction or group of in s t ruc t ions  in p a re nt h e se s  was obeyed

is-rasediatarly, rather than added to the pr -agr Thus “ (jl) “ j arrc a

to- statement 1.

Thi s language is not at a very high level, but hr ck-:a” s main

concern was simplicity and a desire to keep Lb . n- - 

samoct -ily to and from the o lcac t rocr .a t ic  h igh-sp eed  su~roc rS, . b-lary. I’~
-e l e-o t roct at i c  memory consisted of only 512 iF - a lt a r-~~- , and I1 was

necessary to make frequent t- r axi sf - : r s  ron and t c the ~bF K-a- -r a bras: :

:l- aoing-a:o Fnt subrout ines could comput e while- the a ’a:’b tics-k of

a a- - a’-racaa was being read in. Thus two of the p r t a r e - ip al d i f ficu lt i es

Facin g a r- -ognaxnme-r -- scal ing nn:s coping wit~e- the tue -1- -re -I store- - -

u- a’~- removed b .~ h i s  Autocode system , an .r. it was heavily u:- a . 2:-n

-:xaiapie:

- ~ its completion in 1955 the b-b ark I Auto-code has been used

e--xt n s av c l :,- l - : r  about 12 hours a w e- nh as the bas is  of a computing

se- r~’i ce for which - -: :s~ omer: ~~ i te  their own crograra: and post

them te- us. [BR 5e , . 1 1

N . Fei~ 
-

- 5 .  who ere-”-aloF -a c the first- Autocode for the Ferrant i 

3. says in [FE 60] that its specification “clearly owes much to

1-In. R. A. h s r a o k e r .” Incidentally, Brooker ’s next Autocode (for the

b-lark II or ‘ b’karca i ry ’ cesapot-er , first delivaare- i in 1957 ) was considerably

more- ambi tious ; see [BR 5 ,  BR 58’ , BR 60].

1 5

-~~~~~~~~~~ --



Russian Frograz’aning Programs .

Work on automatic i rogranming began in Russia at the Mathematical

Institute of the Soviet Acas i eray of Sciences , and at the Academy’s

conj utat ion C a ra t -e r ’, wh Ich originally was part of the Institute of ~ cact

1-be cias arics and T e-ara ut ing Tnchrr Liue . The early Russian syst ems were

a- - epa - i atcl: cole-s ir-igranvlrag iTarr a2:as: [}rogroraairt~~oshch ye Progra~~~ ]

-- -or ~F1 for shir t . Air cr- :pe -r r ’er it a l  p r a g r a n  U~ -l for the STRELA computer

was cons t rue -t ee  by E. . Li ar h::: -: 1 and S. 3- . Kanrynin during the summer

of 19514; and these two authors , together with M. F . Shura-Bura,
2. L. Lukhovitskai a, anl V. . Sht-er -kaaa ar a , completed a production compiler

called TI O~ f in Februoa-~-, 1955. This c ompiler is described in [}~~ 58].
-hanwhil €e , A. F. Ershov began in December 19514 to desigu another prograimning

c:oa-an , for the BRIM computer, with the help of I. N. Korolev,

1,. D. Far -va, V. Ii. Poderiugin apr-b V. i-I . Kuroohkin;  this compiler, called

~1re-~ ly FrTT , was completed in ~-baa -ch , i:’t- , and it is described in Ershov ’ s

book [ER 58]. A review of these developments aj i e - a r s  in [Ku 58].

in both of these cases, and in the later system U -3 completed in 1957

( r a e  [ E R  5 5 ~~] ) ,  the iangua~ ia was based on a notation for expressing F

programs developed by A. A. Liapunov in 1953. Lia~ trnov ’ s operator

66

—



schemata [U 58] provide a concise way to represent program structure

in a linear versa -ar;  in some wa:rs this approach is analogous to

the ideas of Curry we have already considered, but it is somewhat

more elegant and it became widely used in Russia.

Let us consider f i rs t  how the Ti—K algorithm (exclusive of inp ut-

can he described in IT’fl’-2. The overall operator scheme for the

r )gran would be written

~~ ~~~~~~~~~ ~ ~~~~~~~ ~~ ~~~~ ~~~~~~~~ ~~~l
FL~

. R l3 ~~ ~~~

here the it cra ter s  are numbered 1 thru 114 ; and 
~~~~

, mean

respectively “ go to operator n if true, go to operator m if false “,

‘~:-aFie ~~ , are the corresponding notation s for “ coming from ore -ra ter i .

This operator scheme was not itself input to the progr arrraing rro graarr

ercplicitly, it would be k-ap t by the progr ammer in Lie-c of a

flowchart. The details of operators would be written sea araLel~-~ and

input to IU -2 after dividing them into operators of t~~~es R (reloilonal ,
A (anithmeticl , z (di sa -atc i:~ , F (address rnodification a ,

0 (restoration), and U (nonstaanla:r-i , i .e . , ,nachine language). In the

above case, the details are essentially this:

R 14. p1; - - , 5 [if p1 is true go to r: - else t o 5]

a
7
. p~~; ~, 10 [if

~~~~ 
is t niva go to 8 else to 10]

R13 . f 7 Z p i , 2 [if p
3 

is t rue go to l1a else to 2 )

~~~ 
C

3
< V

2
{O ’ai x]

p
2~

C
14 < v

3
[1400 < y]

~5 3 • v6 < c
3

[i < O]

A1
. C , - V,~ [10 = I , i. e ., set equal to 1:-]

v~ [a. = xl

~~~~~~ ~~~~~ 
v2 [O-x = xl



ppP
!PIU IU!~~~~. - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-‘~~~~~~~~~ -—--“-= ---,.---- -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A- . (~~v2)+(e5.v1
.v .v

1) =v3 
[(/x)+(5.a..a. .a.) = y ]

~~~~~~ v -  = -
- - , c2 = v [i = b., ~~ = c .]

A 1~~. v - = v , = v5 = b., y = c.]

A11 . V -c1 - V [i—l = i]

v1 ; 3, 6 .[dispatch a1 to special cell, in operators 3 thru 6]

F1 .
v :: 2. 10 [modify addresses depending on parameter i, in

operators 2 thru 10]

N9
. Ii 11 [go to operator ll]

OST [stop]

Dcp e-ndcnce or a-anameter v6. v1,v1, -1; v14, v5, +2

[when i changes, v1 goes down by 1, v14 thru v5 go up 2]

.11 [1]

c2. ~999 .~~ 3 [999]

C 7 . 0

c14. .14 .l0~ [1400]

c5. .5.101 [5]

Iserking cells : 1-DO , 119 [compiled program can use locations 100-119 for temp
storage]

‘l~
13i [initial address of a.]

-s,~. 131 [address of x]

j
3 . 132 [address of y]

V1 . l~~ [initial address of b.]

vt- . i~ 14 -
[initial address of c.]

v(- . 1514 [address of ii

crperator 1 initializes i , then operators 2 thru 13 are the loop on I

Operator 2 moves a• to a fixed - - - i l , and makes sure that operators 3

68

- -

thru 6 use this fixed cell; this progrananer-supplied. optimization
means that fewer addresses in instructions have to be modified when

i changes. Operators 3 thru 5 set x = 1a1 1 , and operator 6 sets

y = f(a1) . (Note the parentheses in operator 6; precedence was not
reco~ iized.) Operators 7 thru 10 store the desired outputs in memory;
operators 11 and 12 decrease i and appropriately adjust the addresses
of quantities that depend on i . Operators 13 and. 114 control looping
and stopping.

The algorithms used in T1T~-2 are quite interesting from the standpoint
of compiler history; for example, they avoided the recomputation of

common subexpressions within a single formula. They also produced

efficient code for relational operators compounded from a series of
elementary relations, so that, for example,

(p1v(p2~p3
) v ~~)~p5 Vp6

would be compiled as

Ershov’ s TTTT language improves on 7111-2 in several respects, notably
(a) the individual operators need not be numbered, and they may be

intermixed in the natural sequence ; (b) no address modification need

be specified, and there is a special notation for loops; (c) the

storage for variables is allocated semi-automatically; (d) operator —

precedence can be used to reduce the number of parentheses within
expressions. The TPK algorithm looks like this in lIlt:

-~~

69

-
~~~ Th=~~~~~ . _ I  

~~~~~~~~
“ -~~~~~~~~~~~

-.-
~

—- - --- - — — --‘ — — - — —-—- --- -

~ Massiv a (ii f~.cheek) [declares an array of 11 cells]

2 a0 = 0 [aiIdress in array a]

3 a~ = -l.j+l O [address in array a depending on j]

14 j: 3nach 0, 3kon = 11 [i~i~~or~atbon on loop indexes]

—
-

5 0, 11, 10, 5, y, 1400, 999, i [list of remaining constants and variables]

6 (Ma,o8o,0,a0);(Mb,0,0I,0);

1 [l0-j =~ i;/moda .+5x a
3. =~ y;

J
0101

8 R(y,0l02; ~~~~

0103
9 ~ Vyd i, ~ 0; Vyd 999, ~ 0; [~~~;0101

10 L_~ Vyd i, ~ 0; Vyd y, ~ 0; L__]; STOP
0102 0103

After declarations on lines 1 thru 5, the program appears here on lines 6

thru 10. In 7171 each loop was associated with a different index name, and
the linear dependence of array variables on loop indices was specified
as in line 3; note that a~ does not mean the j —th element of a , it
means an element of a which depends on j . The conmiands in line 6
are BESM machine language instructions which read U words into memory
starting at a0 . Line

~
shows the beginning of the ioop on j , which

ends at the “]“ on line 10; all loc’~ indices must step by +1 . (The

initial and final-plus-one values for the j loop are specitied on line b .)
Line 8 is a relational operator which means, “If y is in the interval

(14oo,~~) , i.e., if y > 1400 , go to label 0101 ; otherwise go to 0102 .“

Labels were given as hexadecimal numbers , and the notation L indicates

the program location of label n . The “ V y d” instruction in lines 2 and.
10 mean s convert to decimal, and “ , ~~ 0 “ means print . E~verything

else should be self-explanatory .

70

-‘ —.—‘-.-.

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘ ,,. r’-”~~—’.’~~~~~~---’— — ~~~~~ ‘-~~~
‘‘

~~~

~~ The Bussian computers had no alphabetic input or output, so the

-;
~

programs written in 1111-2 and 1111 were converted into numeric codes.

This was a rather tedious and intricate process, usually performed by

two specialists who would. compare their independent hand-transliterations

in order to prevent errors. As an example of this encoding process,

here is how the above program would actually have been converted into

BESM words in the form required by Tflr. (The hexadecimal digits were

wrItten 0,1,.. .,9,O.1, . ..,5 . A 39-bit word in BESM could be represented

either in instruction format ,

-

-

bbh bqhh bqhh bqhh

where b denotes a bin ary digit (0 or 1) , q a quaternary digit

(0 , 1, 2 , or 3), and h a hexadecinial digit; or in floating-binary

numeric format,

‘-
~~ ± 2 k

,l th hh hh hh

-where k is a decimal number between -32 and +31 inclusive. Both of

-

a these representat ions were used at various times in the encoding of a

TIlT program, as shown below.)

Location Contents Meaning

07 000 0000 0000 0000 no space needed for special subroutines

08 000 0000 0000 0013 last entry in array descriptor table

09 000 0000 0000 0015 first entry for constants and var ialvees

05 000 0000 0000 0012 last entry for constant s and variables

01 000 0000 0000 0O2~ base address for encoded program scheme

05 000 0000 0000 00142 last entry of encoded program

0~ 000 0000 0000 029~ base address for “block y

oE 000 0000 0000 0215 base address for “block a ”

05 000 0000 0000 0235 base address for “block ~~~~
“

10 015 0000 0001 0000 a = array of size 11

11 000 1001 0000 0000 coeff icient of -l for linear dependency
12 2

1
, 00 00 00 00 a

0 =
0 relative to a

13 2
2
, 114 00 0005 a . = -l.j+lO relative to r

- -

~ 114 000 0015 001° 0000 j = loop index from 0 to 11

71

— - --—----~~~ — — -~~~ - - --. -~~ . - —

- —- - - —
~~,--

- - —
~5~r-- — —- _ _ _ — —- - - - -

- -
- - ~‘

Location Contents Meaning

15 2 32, 00 00 00 00 0

1a 2~, 10 00 00 00 11

17 2~, öO 00 00 00 10

18 2~, ö0 00 00 00 5

19 2~, 58 00 00 00 1400

10 2
10, 59 So oo 00 999

11 000 0000 0000 0000 i

12 000 0000 0000 0000 y

— 30 Ole oo8o 0000 0012 (Ma , o8o , 0, a~)

t
31 017 0000 oooi 0000 (Mb , 0, 01, 0)
32 018 00114 0000 0000 [.

35 2 , 17 04 14 08 10 - j ~
314 2

0
, 11 53 52 13 i / mod a •
0

35 2 , 03 18 09 13 + 5 x a,~
2
0, O~ 08 1~ 00 y

37 018 0000 0012 0102 R(y, 0102;
0101

008 0019 0000 0101 ~ (14oo,~))

39 018 0101 0000 0000
0101

30 20, 5i~ 11 07 00 Vyd I ,~~ 0

31 20, 514 l-~ 07 00 Vyd 999 ,~~ 0
0105

011 0000 0000 0103

3~ 018 0102 0000 0000
0102

20, 514 11 07 00 Vyd i ~~o 0

35 2
0
, ~~ 12 07 00 Vyd y ,~~ 0

018 0103 0000 0000 ~
-

0103
141 015 1355 1355 1355] -

142 Ol~ 0000 0000 0000 STOP

L _ :i~~.

—- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..-S-—
~~~~~~~~~~~~ 

—
~~

The BESM had 10214 words of core memory, plus some high-speed

read-only memory, and a ma~~etic drum holding 5 x 10214 words. The T1~1

compiler worked in three passes (formulas and relations, loops, final

assembly), and it contained a total of 1200 instructions plus 150
constants. Detailed specifications of all its algorithms were published

in [ER 58]; krsh-v,r was aware of Rutishauser’s work [p. 9], but he gave

no other references to non-Russian sources.

~~~~~~~~~~~~~~~~~~~~

Corn a t - s r pr ofession als at the Boeing Airplane Company in Seattle,

Washi n gton , felt that “ In this jet age, it is vital to shorten the tine

fran the definition of a problem to its solution .” So they introduced

BACAIC, the Boeing Airplane Company Algebraic Interpretive Computing

system for the IBM 701 computer.

BACAIC was an interesting language and compiler developed by

Mandalay Grems and R. E. Porter, who began work on the system in the

latter p art of 195b ; they presented it at the Western Joint Computer

Conference held in San Francisco, in February, 1956 [GP 56]. Although

the “ I” in BACAIC stands for “ Interpretive” , their system actually

translated algebraic expressions into machine language calls on

subroutines, with due regard for parentheses and. precedence, so we

would now call it a compiler.

The BACAIC language was unusual in several respects, especially in

it s cont rol structure which assumed one-level iterations over the entire

progr am ; a program was considered to be a nearly straight-line computation

to be applied to various “cases” of data. There were no subscripted

• variables; however, the TPK algorithm could be performed by inputting

a the data in reverse order using the following program:

73

—‘-— -fl-,
•-•- •- • -

1. I-K 1~
2. X

5. W H N X G R T K2 USE 5
I~ ~~-X~ 2

5. S R T X + K 3 . ~~PWR K14

6. WHI 5 GRT KS USE 8
7. TRN 9

8. ~O- *5

9. T A B 1 5

Core “ * “ is us~ -J for assigument , “
•
“ for multiplication ; variables

are given single-letter nam~ s (except K), and constants are denoted

by ~~rn - - . The above ~ r ogr wr i s to be used with the following

In~ ut- data:

Case 1. ~0. = 1. - = 0. - KS = 5.0 1(14 3.0 KS = 1400.o 1(6 = 999.0
1= 1 1 . X = a 1,~

Ca0e 2. X = a
9

Case ~~~. X = a 8
Case 11. X = a

0

Data values are identified by name when inlut ; all variables are zero

initLally, and values carry over from one case to the next unless changed.
For example , expression 1 means I-i I “

, so the initial value I = 11

needs to be in1ut only in Case 1.
aOcjr~ssions 2, 5, 4 ensure that the value of expression 2 is the

absolute value of X when we get to expression 5. (The “ 2” in

expression 14 means expression 2, not the constant 2 .) E~cpression 5
therefore has the value f (X)

A t:,rp ical way to use BACAI C was to print the values associated with
all expressions 1,2 , ... ; this was a good way to locate errors.

~-Dq r ession 7 in the above program is an unconditional jump ; expression 9
says that the value of I and expression 5 should be printed. .

The BACAIC system was easy to learn and. to use, but the language
was too restrictive for general-purpose computing. One novel feature

was its “check-out mode”, in which the user furnished hand-calculated data

and the machine would j ririt out only the discrepancies it found.

714

According to (BE 57], BACAIC became operational also on the

IBM 650 computer, in August of 195 -
p

Kompilers.

Another independent development was taking place almost simultaneously

P
at the University of California Radiation Laboratory in Livermore,

California; this work has apparently never been published, except as an

internal report [EK 55], In 195 14, A. Kenton Elsworth began to experiment
with the translation of algebraic equations into IBM 701 machine language,

- -

P
and called his program K01~~ILER 1; at that time he dealt only with
individual formulas, without control statements or constants or input/outr-st .

Elsworth and his associates Robert Kuhn , Leona Schloss, and Kenneth Tiede

went on to implement a working system named KOMPILER 2 during the following
year . This system is somewhat similar in flavor to 1111-2, except that it
is based on flow diagrams instead of operator schemata. They characterized

its status in the following way:

In many ways Kompiler is an experimental model ; it is thereCora

somewhat limited in app lications. For example it is designed to

handle only full-word data and is restricted to fixed-point

arithmetic. At the same time every effort was made to design a

workable and worthwhile routine: the compiled code should approach

very closely the efficiency of a hand-tailored code ; learning to

use it should be relatively easy; compilation itself is very

fast. [EK 55]

In order to compensate for the fixed-point arithmetic, special

features were included to facilitate scaling. As we will see, this is

— a- rorh ajs KOMPILER 2 ’ s most noteworthy aspect.
- 1 To ~olve the TPK problem , let us first agree to scale the numbers

by writing

A . = 2~~° a. , Y 2
10

y , I = ~~~~ i

Eurthermore we will need to use the scaled constants

V = 5.2~~ , F = L~ -~ .2~~
0

, N = 999.2~~
O

, W = 1.2~~~ .

The next step is to draw a special kind of flow diagram for the p r ~~~ -r -usa ~

75

-
_ _

-
~~

-
~ T

I

CARD constants Read values of constants and initial
value of I from a data card.

1
Read

~~~~~~~~~~~~~ 
from two more data cards.

3 1

®__[/
~~

A
~j  •2~~ + VA~ .2

+13 = Y ] Calculate Y .

— 

1 4 1  
_ _

(~~~F :Y )-
~~~ 

f~~ Go to 6 if 400>y.

N = Y Set y to 999 .

14 PRINT i,y Print answer.

I Decrease i by 1.

8
Decrease address of A

~
by 2

ii = -2 wherever it appears.

9
>

1:0 3 Return to 3 i f i > O .

10

STOP Stop the machine.

76

14

The third step is to assign the data storage, for example as follows:

61 a I , 6~ a y , 65 V , 67 a F , 69 N , 71 a W;
8 laA 0, 83 a A 1, ... , lOl~~~A10

(Addresses in the IBM 701 go by half words, but variables in KOMPIIDER 2

occupy full words. Address 61 denotes halfwords 60 and 61 in the

“ secon d frame” of the memory.)

The final step is to transcribe the flow-diagr am information into

a fixed format designated for keypunching. The source input to

KOMPILER 2 has two parts: the so-called “ flow diagram cards” , one

card per box in the flow diagram, and the “algebraic cards ” , one per
— cc!nplex equation. In our case the flow diagram cards are

lc~~D 61 2 235 0 103 310 310 135 0 6-1

2CARD 81 2 310 310 310 310 510 510 510 95 114
3 CALC 101 8 65 101 8 6~
14TRPL 67 6~ 6
5PLUS 69 6~
6PRNT 61 6~ 2 15 5 10

7MINS 71 61 61

8DECR 2

9TRPL 61 z 3
1OSTOP

and the algebraic cards are

l*ACAR D

2*~ PRWT

‘~ ERTLABSA.-05+VA3.+l3=Y

Here is a free translation of the meaning of the flow liagr am cards :

1. Read data cards into locations beginning with 61 in steps of 2 • The

words of dat a are to be converted using respective scale codes C3~ ,
- .105,

.,0 ; stop reading cards after the beginning location has become - 1

i. e ., immediately . (The scale code ddbb means to take the l0-Di~~it

77

- • — -
•—••-—-—-- --

~
- • - -~~~~~~-.--- -~~~~~

—
‘ “ ~~~~~~

~~~~
- ‘

~~~~~

data as a decimal fraction, multiply by lO~~ , convert to binary,
bband divide by 2 . In our case the first input datum will be

punched as 1000000000 , and the scale code 235 means that this

is regarded first as (10.00000000)10 and eventually converted t~
(.00.. .01010)2 =

l0.2~~~ , the initial value of I . The initial

value of N , with its scale code 310 , would therefore be iun ch~ C

9990000000 . Up to seven words of data are punched per data card.)

2. Read data cards into locations beginning with 81 in steps of 2.

The words of data are to be converted using respective scale codes

3l0,3l0,...,3l0 ; stop reading cards after the beginning location

has become 95 . The beginning location should advance by 114 —

between data cards (hence exactly two cards are to be read).

3. Calculate a formula using the variables in the respective locations

101 (which changes at step 8); 65; 101 (which changes at step 8);
and 43.

14. If the contents of location 67 minus the contents of location 63
is nonnegative, go to step a - .

5. Etore the contents of location 69 in location 63 .
- - . Print locations 61 through 4-3 , with 2 words per line and 1 line

~er block. The respective scale factors are 35 and 10.
-
. Subtract the contents of location 71 from the contents of location 4-i

and store the result in location 61
5. Dec rease all locations referring to step 8 (cf . step 3) by 2.
9. If the contents of location 41 is nonnegative, go to step 3 .
10. Etoi the machine.

The first two algebraic cards in the above example simply cause the

library subroutines for card reading and line printing to be loaded with

the object program . The third card is used to encode

~~~~~ . 2 ~~ +VA ~ .2 13 
=

The variable names on an algebraic card are actually nothing but dununy

p- ~ atc~-ho1Jerc- , since the storage locations must be specified on the

corresponding CALC card. Thus, the third algebraic card could also

have been punched as

78



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o -

P

3ASRTIABSX. -05+XX3 .+l3=X

without any effect on the result.

KOMPILEE 2 was used for several important production programs

at Livermore. By 1959 it had been replaced by KOMPILER 3, a rather

highly developed system for the IBM 7014 which used three-line format

analogous to that of MAC (but apparently designed independently).

79

-

~

-~~

A Ucclarativs- Lariguag~~.

During 1955 and 195 , 1. K. Blum at the U. S. Naval Ordnance

Daboratory developed a language of a completely different t yie . This

language ADo S (Automatic Digital Encoding System) was presented at the

national meet ings in 195 5 [when no proceedings were published] and

1’-5- [BL H ‘1 , and at the ONR symposium in 195 6 [BL 56’].

The AlES language is essentially mathematical in structure. It

is based on the theory of the recursive functions and the schemata

for such functions, as given by Kleene. [BL 5- - ’ , p. 72]

Th -- AlES at o r o a c h to automatic programming is believed t o be

e nt Ir e ly s ow . Mathematically, it has its foundations in the

of the th-: ory of recursive functions. The proposal

to aP a ly this th-sery to automatic programming was f i rs t made
by -

. C. :- -Tgot , a : -rn- r colleague of the author ’s. ~oi1o at

H - h aval Ordnance Lasor stary , Elgot did some res earch on a

language for automatic programming . Some c-f his ideas were

:tua~~-aaI to [BL 5 , p. iii]

A ful l : - :or H - s-n of the language was given in a l e ngt h y roj ort

[BL 5’ 1; it is r a t h - - r d i f f icul t to understand several aspects of Al-: - ,

and we will ~~- - nt e nt ourselves with a brief glimpse into it s str-scture
b-s c o n s i st - - r i n g the following ADES program for TPK. (The conventions

of [BL 57’] are followed here since they are slightly s imp Ter than the

~r i sina l p r ofc s i l : in [BL 56].)

8o

- ~~~~~~~~~~~~~~~~~~~~~~ w~~~~~~r-~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ ~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~ - - - -

1 a ll:q ii,
— 0

= + / abs c1 
• . 5 c1 

C
1

3 d~2b1 = r0,

I d
2~b2 

= < b3 h : : , L~,, -

5 b3 = f50 a0 r),
= -1: sj~~,

7 Y O q, 10b = f b b~,0 U l c

He re is a rough translation : Line 1 is the so-called “computer taP To ,

meaning that oar-ut array a0 has 11 positions, and the “independent

P index symbol ’ q(~ 
t -niJ~-:- s 11 values. Line 2 defines the auxiliary func t ion

, our f(t) ; arithmetic tsx~s-ressions were defined in Lukasiewicz’s

p-arentheses-free  not at i c-r i , now commonly known as ‘ left Polish” . Variable

here do n- a -te e  tb-s f~rs-t p - -r-amo~-es - of the f u nct i on . (Incident -ally,

r ight  Polish” notat b~n a seems to have been f i rs t.  proposed shortly

afterward :  by C. .. Hainblin in Australia, cf.  [HA 57 ] . )
Line 3 s tat e :  that the dependent variable b1 is equal to the de~ endent

index r0 ; 
trie “ d12 

“ here means that this is to be output as component 1

of a s .  Line 14 : sH lariy defines b2 , which is to be component 2.

This line is a ‘bran H-i equatHo ” meaning “ if b
3 

< 1400 then b
3 

else 990

(Such branch eq~oit ion : are an embryonic form of the conditional expressions

introduced later by i’ :- :-erth y into LISP and. ALGOL. Blum remarked th at the

equation “ < x a, , g, “ could be replaced by ~ f + ( :L-~: )g , where ~
is a function th at takes the value 1 or 0 acoording as x < a or

x > a . {BL - , 
~~

- . 1- ] “The function ~ is a primitive recursive

fun ct ion , and could be incorporated into the library as one of the given

m otions of the s y s t e m .  bc -ver Thele : s, the branch equation is included

in the language for practical reasons. ~-hny ra athematie-Lntn r are accua: t om C

to ho~ rTLino lu 4Cj, and it leads to more efficient programs.” In :~ ite

of these a-C. at - -merit: , Blum may wel’ have intended that f or g not be

P evaluated or even defined when rp = 0 or 1 , respectivi -t :- .)

51
I

-~~~~~~~~~ - - ~~~~~~~~~



-~ =-~ —--- - - .-.

Line 5 says that b
3 

is the result of applying f50 to the r0 -t- .
element of a0 . Line 6 explains that r0 is 10-q0 . Finally, line 7
is a so-called “phase equation” which specifies the overall program flow

cy saying that b1 and b2 are to be evaluated for = 0,1, . . ., 10

The ADES language is “declarative” in the sense that ~he programmer

states relationships between variable quantities without explicitly

so-ecif~jing the order of evaluation. John Mccarthy tut it th is way, ir. 1958:

Mathematical notation as it presently exists was developed to

facilitate stating mathematical facts, i.e., making declarative

sentences. A program gives a machine orders and hence is usually

constructed out of imperative sentenc~~s. This suggests that it

will be necessary to invent new not at ions for describing cos~ licated

procedures, and we will not merely be able to take over intact the

notations that mathematicians have used for making declarative

sentences. [ER 58’, p. 275]

The transcript of a 1965 discussion of declarative vs. imperative languages,

with comments by P. AbraI-imns, P. Z. Ingerman, E. T. Iron s, F. N aur,
B. Raphael, R. V. Smith, C. Strachey, and J. W. Young, appears In

Comm. ACM 9 (1966), pp. 155-156, 165-16-6-.
Although ADES was based on recursive function theory, it did. not

really include recursive procedures in the sense of ALGOL 60; it dealt

primarily with special types of recursive equations over the integer-’,

and the emphasis was on studying the memory requirements for evaluating

such recurrences.

~n experimental version of ADES was implemented on the IBM 650,

and described in [BL 57, BL 57t]• Blum ’ s translator scheme was what
w-~ now recognize as a recursive approach to the problem, but the recursion
was not explicitly stated; he essentially moved things on and off various

: acks Curing the course of the algorithm. This implementation points

- - - ‘ar c problems people had to face in those days: The ADES

- t”r took 3500 instructions while the Type 650 calculator had room

• so it was necessa r y to insert the program card decks

- -- ‘Lahin l repeatedly, once for each equation~ Because of further

- 
~~
‘ at ar.e, the above program would hav e been entered into the

- s,’shing the following information onto six cards:

82

~~~~~~~ —- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~


—.“ ,-

~~~~~

—“ —-—-

~

-

~~

--‘-. 
_____

A00 011 P02 ~)0 011 P01 F50 E)00 F02 F20

Fo6 coi F014 P014 P014 005 COl COl COl 101

D12 BOl E)30 R00 101 D22 B02 E00 PU B03

14oo 101 B03 P01 999 P01 B03 FDO F50 A00

R00 101 R00 EX)0 P03 010 ~D0 P01 103 000
- 

. ~J0 010 BOO E00 F00 BOl B02 P01 — —

Thus Pnn was a punctuation mark, Prim a function code, etc. Actually

the implemented version of ADES was a subset that did not allow
- 

- auxiliary f-equations to be defined, so the definition of b
3 

in

line 5 would have been written out explicitly .

The IT.

In September, 1955, four members of the Purdue University
Computing Laboratory -- Mark Koschman , Sylvi a Orgel, Alan

Perils, and Joseph W. Smith -- began a series of conferences
to discuss methods of automatic coding. Joanne Chipps joined

the group in March, 1956. A compiler, programmed to be used

on the Datatron, was the goal and result. [OR 58, p. 1J

Purdue received one of the first Datatron computers, manufactured by

Electrodata Corporation (cf. J. ACM 2 (1955), p. 122, and [PE 55]) ;  this machine
was later known as the Burroughs 205. By the summer of 1956, the Purdue

group had completed an outline of the basic logic and language of its

compiler, and they presented some of their ideas at the ACM national

meeting [CK 56]. It is interesting to note that their 1956 paper
used both the words “ compiler ” arid “ statement” in the modern sense;

a comparison of the ONR 195 14 and 1956 symposium proceedings makes it

clear that the word “compiler” had by now acquired its new meaning.

Furthermore the contemporary FORTRAN manuals [TB 5s , lB 57] also used
$ the term “ stat ement” where [lB 514] had said “ formula” . Tarminolo~~r was

crystallizing.
At this time Perlis and Smith moved to the Carnegie Institute of

Techno1o~ r, taking copies of t}’- flowcharts with them, and they adapted

• the ir language to the IBM 650 (a -‘aller machine) with the help of

Harold Van Zoeren . The compiler was put into use in October, l95t - ,

(cf. [PS 57, p. 102]), and it became known as IT, the Internal Translator.

83
P



- 

‘.-

~~~

‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ “~ “ - T ~~ ~~~~~~~

Compilation proceeds in two phases: 1) translation from an IT
-

I

program into a symbolic program, PIT and 2) assembly from a PIT

program into a specific machine coded program, SPIT. [PS 57’ , p. 1.23]

The intermediate “PIT” program was actually a program in SOAP language [PM 5 5] ,

the source code for an excellent symbolic assembly program for the IBM 650.

a Perlis has stated that the existence of SOAP was an important simplifying

factor in their implementation of IT, which was completed about three

months after its authors had learned the 65o machine language.

Thi s was the first really useful compiler; IT and IT’s derivatives were

used successfully and frequently in hundreds of computer installations until

the 650 became obsolete. (Indeed, R. B. Wise stated in October, 1958
that “the IT language is about the closest thing we have today to the universal

language among computers.” [WA 58, p. 131]) The previous systems we have

discussed were important steps along the way, but none of them had the

combination of powerful language and adequate implementation and documentation

needed to make a significant impact in the use of machines. Furthermore, IT

~roved, that useful compilers could be constructed for small computers

without enormous investments of manpower.

Here is an IT program for TPK:

1: READ

2: 3,Il,lO,—l,O,

5 : Yl — “2OE,AC(Il+1)”

+(5x(C(Il+l)*3))

~: G3 IF 14oo.o > yl
7: Y 1- 9 9 9

3: TI1 TY1

10: H

bach statement has an identifying number, but the numbers do not have to

be in order . The R EAD statement does not specify the names of variables

being input , since such information appears on the dat a cards themselves.

Floating-point vari ables are called Y1,Y2,... or C1,C2,... ; the above

:~ro~ ram assumes th at the input data will specify eleven values for Cl

thru d l .
Statement number 2 designates an iteration of the following program through

statement number 3 inclusive; variable Ii runs from 10 in steps of -l

down to 0. Statement 5 sets Yl to f (C 11~1) ; the notation “ 2OE , x “ - p

814

-
~~~ ~~‘ “ ~‘~ ~~~~‘~‘ “‘‘ Y ’~ ~~~~~ ‘ “  ~~~~~~~~ ‘ ~TW- w~~~ —, 

~~
“ ‘ T T - - . ”

~~
’ ’  -‘ —- ‘ ‘ ‘  - “ “ “  “~~~‘ ‘

is used for “language extension 20 applied to x ”, where extension 20

happens to be the floating-point square root subroutine. Note the use

of mixed integer and floating-point arithmetic here . The redundant
pareritrieses emphasize that IT did not deal with operator precedence,
although in this case the parentheses need not have been written since

IT evaluated expressions from right to left.

The letter A is used to denote absolute value, and * means

exponentiation. Statement 6 goes to 3 if fl < 1400 ; and statement 3
outputs Il and Yl . Statement 10 means “halt”.

Since the IBM 650 did not have such a rich character set at the

time, the above program would actually be punched onto cards in the

following form - - using K for comma, M for minus, Q for quote,

L and R for parentheses, etc.:
P

0001 R EAD F

0002 3K IlK 10K M1K OK F

0005 Yl Z Q 2OEK ACLI1S1R Q F
- - 0005 S L5 X LCLI1S1R P 3RR F

0006 G3 IF 1400 JO W Yl F

0006 Y1 Z 999 F
0003 TIl TY1 F

0010 H PP

4 The progr~~~ er also supplied a “header card” , st at ing the l~~ its on

array subscripts actualLy used; in this case the header card. would

say 1 I variable , 1 Y variable, 11 C variables, 10 statements.

(I t was possible to “go to ” statement number n , where n was the value

of any integer expres sion , so an array of statement locetions was kept

in the running program.)

The Purdue compiler language discussed in [CK 5o~- was in some respects

richer th an this, it included the ability to type out alphabetic information

and to define new e~ct~ensions ( functions) in source language . On the other

h an- C , [CK 56] did not mention iteratior. stat ement s or dat a input . Joanne

p Chipps and S:-ilvia Orgel completed the Datat ron implementation in the

~~ summer of 1957 ; the lan -~uage had lost the richer features in [CK 56], ii ewee -er ,

85

a - - -~~~~~~~~
-
~~~~ ~~~~~~~~~

- “- ‘~~~~~
-.
~~~~~~~-



,.—,•, -‘-
~ ‘~~~~— --—‘ -

~
‘- -———- 

~~~~

‘.,-.

~~~~~~ 2 - . 
~‘ - -T - ~ ’~ 

- - 

~~~~~ ~~~~~~ 

-

probably since they were unexpectedly difficult to implement. Our

program in the Purdue Compiler language [OR 58] would iook like this:

input iO yO d O slO f [maximum subscripts used]

1 e “800e” f [read input]

2 s iO = 10 f [set i
0 =

10]

5 s yO = “200e, aciO”+(5x(ciOp3)) f

6 r g8, r yO < 1400.0 f [go to 8 if y0 < 1400.0]

7 s yO = 999 f

8 o iO f [output i0]

9 o yO f [output y
0
]

14 s iO = iO-l f

3 r ~~~, r O < i O f [go to 5 if i0 >O]

10 h f [halt]

:;ot s that subscripts now may start with 0 , and that each statement

begins with a letter identif ying its type. There are enough differences

between this language and IT to make mechanical translation nontrivial.

FORTRAN Arrives.

During all this time the ongoing work on FORTRAN was widely publicized.

~ba~ Goldst ein may have summed up the feelings of many people when he made

the following remark in June, 1)56: “ As far as automatic programming
goes, we have given it some thought arid in the scientific spirit we

intend to try out FORTRAN when it is available. Hoc~ever . . .“ [00 56, p. 140]
The day was coming. October , 1956, witnessed another “first” in

the history of programming languages, namely a language description which

was carefully written and beautifully typeset, ne atly bound with a glossy

cover. It began thus :

This manual supersedes all earlier information about the Fortran

system . It describes the system which will be made available during

late 1956 , and is intended to permit planning and Fortran coding in

advance of that time . [lB 5-b , p. 1]

bIb .] cot ~rograms produced by Fortran will be nearly as efficient

as those written by good programmers. [p. 2]

86

~~~~~- --- - ~~~~~~-



“Late 1956” was, of course, a euphemism for April, 1957. Here is how

Saul Rosen described FORTRAN ’ s debut:

Like most of the early hardware and software systems, Fortran
was late in delivery, and didn ’t really work when it was
delivered. At first people thought it would never be done.

Then when it was in field test, with many bugs, and with some
of the most important parts unfinished., many thought it would.

never work. It gradually got to the point where a program

in Fortran had a reasonable expectancy of compiling all the

way through and. maybe even of running. [RO 614]

In spite of these difficulties, it is clear that FORTRAN I was
worth waiting for; it soon was accepted even more enthusiastically

U than its proponents had dreamed..

- A survey in April of this year [1958] of twenty-six 7014 installations
indicates that over half of them use FORTRAN for more than half

P of their problems. Many use it for 80% or more of their work

(particularly the newer installations) and. almost all use it

— for some of their work. The latest records of the 7014 users’

organization, SHARE, show that there are some sixty installations

S equipped to use FORTRAN (representing 66 machines) and. recent
reports of usage indicate that more than half the machine

- 

instructions for these machines are being produced by FORTRAN.

- - - [BA 58, p. 2146]

On the other hand, not everyone had been converted. The second

- - edition of programming’ s first t extbook, by Wilkes, Wheeler, and Gill,
was published in 1957, and the authors concluded their newly-added.

chapter on “automatic programming” with the following cautionary

remarks:

87
-
P

U - ——,-~~ --



- .—“ —~~~~~—-—~~- . 
~‘~~~~~~ ‘!-~ ~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~ 

..,—,~_— --—-
~~~- w,,- ,—-- — . -~~~~-~~

-----—-‘-
~‘ 

-

The machine might accept formulas written in ordinary

mathematical notation, and. punched on a specially designed

keyboard. perforator. This would appear at first sight to

be a very significant development, promising to reduce

greatly the laJ or of programming. A number of schemes of

formula recognition have been described or proposed, but

on examination they are found to be of more limited. utility

than might have been hoped. .. The best that one could

expect a general purpose formula-recognition routine to do,

would be to accept a statement of the problem after it had

been examined, and if necessary transformed, by a numerical

analyst . .. .  Even in more favorable cases, experienced.

programmers will be able to obtain greater efficiency by

using more conventional methods of programming. [WW 57, pp. 136-137 ]

An excellent pal-er by the authors of FORTRAN I, describing both the language

and. the organization of the compiler, was presented. at the Western Joint Computer

Conference in 1957 [BB 57] . The new techniques for global program flow analysis

and oiatis-.!zat ion, due to Robert A. Nelson, Irving Zifler , Lois M. Ha ibt , and

~hc1don Be~ t , were particularly important. By expressing TPK in FORTRAN I

we can see most of the language changes that had occurred:

C THh TPK ALGORITI-C-i, FORTRAN STYLE

FbflF(T) = SQ~RTF(ABSF(T))+5.O*T**3

~1~i~~ . i-s~ A(ll)
1 FDFJ4AT ( - F12 .1,)

READ 1, A

DO 1O J = l ,ll

I = ll-J
y = FUTfF(A(I+l))

IF (400 .o-y)4 ,8,8
14 }-Fafb ~T 5 ,  I

5 FORMAT( ilb , 1OH TOO LARGE)

GO TO 1O

8 PRIITI ~, I , Y

~ ~bIh~CAi (  IL , F12.7)
10 CUIITINIJE

STOP 52525
88

- - - .-



— ? C~ r ~~~~~~~~~~~ 
- 

~~~~~~~ 
-
~~~~

,- ~~~~~~~~~~ —

- - The chief innovations are

(1) Provision for comments: No progrmmning language designer had thought

to do this before’. (Assembly languages had comment cards , but

programs in higher-level languages were generally felt to be self-

explanatory.)

(2) Arithmetic statement functions were introduced.. These were not

mentioned in [lB 56], but they appeared. in [BB 57] and. (in detail)
in the Programmer ’s Primer [lB 57, pp. 25, 30-31].

(3) Formats are provided for input and output. This feature, due to

Roy bIutt, was a major innovation in programming languages; it
probably had a significant eff act in making FORTRAN popular since

input/output conversions were otherwise very awkward to express

on the 704.

(14) Lesser features not present in [lB 514] are the CONTINUE statement,

and the ahility to display a five-digit octal number when the

machine halted at a STOP statement.

MATR-MATIC and. FLOW-MATIC .

Meanwhile, Grace Hopper’ s programming group at UNIVAC had also been busy.

They had begun to develop an ali~ebraic language in 1955, a project that was

headed by Charles Katz, and. the compiler was released to two installations for

experimen - al testo in 1956. (Cf. [BE 5 7] ,  p. U2.)  The language was originally

called AT-3; but it received the catchier name MATH-MATIC in April, 1957, when
its preliminary manual [AB 57] was released. The following program for TFK
gives MATH-MATIC ’ s flavor :
(1) READ-ITEM A(ll)
(2) VARY I io(-l)o SENTENCE 3 THRU 10
(3) J = 1+1

(4) Y = SQ~ I A (J) i ÷ 5*A(J)
3 

.

(5) IF Y > 1400, JUMP TO SENTENCE 8
(6) PRINT-CUT I, Y

(7) JUYJ TO SENTENCE 10

(8) Z = 9 9 9
(9) PRfl-~T-0U’T I , Z
(10) IGNORE

(ii) :~Tb~

— 
89

— 
-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



______________________________________________

The 1~~~~ca~ c was quite readable; note the vertical bar and. the superscript

in sentence ( 14), indicating an extended character set that could be
used. with some peripherals. But the MATH-MATIC progra.rnmers did not share

the FORTRAN group’s enthusiasm for efficient machine code ; they translated

:-~Ath-~iAT1C source language into A-3 (an extension of A-2), and this

produced extrenely inefficient programs, especially considering the fact

that arithmetic was all done by floating-point subroutines. The UN IVAC

cooc uter was no match for an IBM 7b14 even when it was expertly prograimned.,

so ~-~~~H-~-~ J I C  was of limited utility.

The other product of Grace Hull n~” s programming staff was far more

influential and successful, since it broke important new ground. This

~as wh at she originally called the Data-Processing compiler in January,

1bI55; it was soon to be Iniown as “B-O”, later as the “Procedure

Translator” [1G4 57], and finally as FLOW-MATIC [HO 56 , TA 60]. This

language u::ed. Engli sh words, somewhat as MATH-MATIC did but more so,

and its operations concentrated. on business applications. The following

-cx ams les are typical of FLO~ -MATIC operations:

(1) COMPARE PART-N1J~~ER (A’) TO PART-NUMB ER (B) ; IF GREATER GO TO

OPERATION 13 ; IF EQUAL GO TO OFERATION 14 ; OTHERWISE GO TO

CF~ RA1T ON 2

(2) R At-ITI0~I B ; IF END OF DATA GO TO OPERAT ION 10

The allowable English templates are shown in [SA :9~ pp. 317-322].

The f i r s t  experimental B-O compiler was operating in 1956 [HO 58,
171], and it was released to UNIVAC customers in 1958 [SA 69, p. 31 1.

I- LDW-MATIC had a significant effect on the design of COBOL in 1959.

~~~ unnula-controfled C2~E~~~
r.

At the int~rnational computing colloquium in Dresden, 1955, }~~aus dunelson

presented the rudiments of a particularly elegant approach to algebraic

formula recc4 n~ tion [SA 55], improving on B$hm’s technique. Samelson and

his colleague I- . L. Bauer developed. this method during the en suing years,

and their subsequent paper [SB 5bI] describing it became well I~iown .

90

pr
—

~

-

~~~

-—- 

~~~~~~~~~ ~~~~~

One of the first things they did with their approach was t o design
a computer in which algebraic formulas themselves were the machine

language. This computer design was submitted. to the German patent office

in the spring of 1957 [BS 57], and to the U.S. patent office (with the

addition of wiring diagrams) a year later. Although the German patent was

never granted, and the machines were never actually constructed, Bauer and.
:ur’~lson eventually received U.S. Pat ent 3,047,228 for this work [BS 62].

Their patent describes four possible levels of language and machine. At

the lowest level they introduced something like the language used on today ’s ~coket

calculators, allowing formulas consisting only of o’ erators , parenthese:- ,
and numbers, while their highest level includes provision for a full-.

:‘Iedged programming language incorporating such features as variables

wi th multiple subscripts and decimal arithmetic with arbitrary pro-L I o n .

The language of Bauer and Samelson’s highest-level machine is of

principal concern to us here. A program for TPK could. be entered on

it : keyboard by typing the following:

1 D-9D0.00000000 a~llt
2 2 .27 ~ a~l~
3 3 .326 a~2t

12 5~~
)v - J~ ~ a~L11

P lD~~~i

ph I~1~ oL+l’ t

15 / Bt4-Sxtxtxt ~ y

• y>14 OO -.77~
18 y = ~~~~ ’ J . ~. J ~~~y

21 88* i _ l = i

(Thi s is the Aznerie - i version; the Germ an version would be the same if

all the decimal points were replaced by commas.)

91

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~~~~~~~~~~~~~-~~~- -~ __~
__
~j



- - -~~
- -

~~~~~~~~~~~ ~~~~~~~~~~ -

The “
~~~~~~~~

“ at the beginning of thi s program is optional; it means that

the ensuing statements up to the next label ( 1414* ) will not enter the

machine’s “formula storage”, they will simply be performed and forgotten.

The remainder of line 1 specifies storage allocation; it says that a is

an 11-element array whose entries will contain at most 12 digits.

Lines 2 through 12 enter the data into array a • The machine also

included a paper tape reader in addition to its keyboard input; and if the

data  were to be entered. from paper tape, lines 2 through 12 could be

replaced. by the code

l = ~ i

~~~ ...... =~ a~iI

1+l

~ < 12 —.

Actually this input convention was not specifically mentioned in the patent,

buf Bauer [BA 76 ’] recalls that such a format was intended.

The symbols ~ and. for subscript s would be entered on the keyboard

but they ~-~-uld not actually appear on the printed page; instead, the

~r in ting mechanism was intended to shift up and. down. The equal signs

: ollowed by square boxes on lines lr~, 18, and 20 indicate output of a

sp ec i f i ed number of digits , sh owing the desired decimal point location.

Tb-c rest of the above program should. be self-explanatory, except perhaps

:or the B in line 15 which denotes absolut e value (“ Betrag”) .

I~-- have now reached the end of our story, having covered. essentially
-r/-~r:,- iL~’ --l’~vel language whose design began before 1957. It is

impossibl~ to ~ocntarLze all of the languages we have discussed by
roj aring a neat i L i t - - chart ; but everybody likes to see a neat little

-c h a rt , so hero i s an attempt at a rough but perhaps meaningful comparison.

92

____________________ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~ - - -~~ -- - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~

r —

—
- - — ________________

L~ngua~~ ~~~~
— 0 Sf 1: 6 0 3

t —i-
_______ — — b— — — — _____________________

~~~~~~ 5-~~- -  L~~~ :-:, , F  D A A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

F1-~w : - r ~~ .~ n t - O - ~/ ~~~~ - , 0 A U C 0 A A:~~ - -  ~~~~~~~~~~~ 
-
~~~~~:~~~~~ -~~~.-

i - -U x S U U C -

1-550 0 U F 3 ~~~~ B U

:.‘~- - : ~~- -~~PL U n - ks 1015-c - I - - 0 C A F r:~. - . -~~~ c~ - - -
~~~~~~~~ 

~: - - i a u~~i i ~~~-~ -:~ - -O- ~~~- - r  15 1  ~ i- : 3 ~
- ~i-~~ it ~~~-sth r- - - , i :~~~.~:o~~ - .:-

_
~~~~- -z i-c -~ : - ~~ F 1- -~~~-~~~~~ f 0  -~ -~ 

-
-

- -~~~u :a-~r o e c - . x — -

1 - - C : I ~~~~

-
.nc:r -/

-
-

- U C ~~
- -

~~-:. ~- ~

1 - ~- :‘ U C -
~ - !- ;~~~~~~~~~~~- -..

s- -A. C . C U -) S i -

F 13 1 S C :-
BA 0-.IC 5r~~~ :~~~~~-~~- -r ~

- .5. - F A F A B -:~~~
- - . S ~~~ . -~~r - -n~ - 1

-1o:5Tu5-~ 2 131-~ -:r 1-0s~n - - -
-
- - - s C F :~~~1i~~

ADEC 1-5 - - - 1) 5 -‘ F 5 - - -

CT P~-r ~~~- i - A U - A U- ~~~~~~~~~~~~~~~~~~~~~~~~~~
A ~~~~~~~~~~~~~~~~~~~~~~

~~~~ C2 ’- -~ ~er~ 1 ‘~ U ‘3 
- 

- - - - — ,r -t ~~~ - i ~~~~ IFS1 r

- 
I

_ ____________  ____ - -~~-- - - -~~~~ - - -~~- - - 1~ 2- ________________-

Table 1

a

• -:~3

~

-

-~



~~~~~~J —
~~~~~~~~~~ 

--— ;~~~~~~
-

~~~~~~~~~~ _ _ _  —~~~~
.

~~

-

~~~ 

-

~

--——

Table 1 shows the principal mathematically-oriented. languages we

have discussed, together with their chief authors and. approximate year

of greatest research or development activity. The “arithmetic” column

shows X for languages that deal with integers, F for languages that

deal with floating-point numbers, and S for languages that deal with

scaled numbers . The remaining column s of Table 1 are filled with very

sub3-ective “ratings” of the languages and. associated programming systems

according to various criteria.

Implementation : Was the language implemented on a real computer’?

If so , how efficient and/or easy to use was it?

Readability: How easy is it to read programs in the language?

(Thi s includes such things as the variety of symbols usable

for variables, the closeness to familiar notations.)

Control structures: How high-level are the control structures?

Are the existing control structures sufficiently powerful?

(By “high level” we mean a level of abstraction ; something

the language has that the machine does no t . )

Data structures:  How high-level are the data structures? (For

example, can variables be subscripted?~

Machine indep endence: How much does a programmer need to keep
in mind about the underlying machine?

imp ac t : How many people are Imown to have been directly influenced

by this work at the time?

r irlally tILore is a column of “firsts”, which states co~ne new th ing(s )

th i s  part : -oJar  language or system introduced.

The 

What have we not :-een , among all these languages. The most significan t

gaps ar- the lack of high-level data st ruc tu re::  other than arrays (exce~t

in - use ’ s unpublished language); the lack of high level control structures

othe r than i t e ra t ion  controlled by an index variable; and the lack of

IL~~L ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~ - --_ ~~~~~~~~~ -.,----~~~~
— - --—-—- -



---.-v-,- 
~ —‘-—~~~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s~~—.,.. _

~~
__’__ ~~~~~~~~~~~~~~~ - -- ~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ 

‘,
~
“ ..—_,-.._,.~.,..... -,. ‘_____._ _ __ — 

~~ -‘--_
~

recursion. These three concepts, which Ouw are csnsidered ao:oiu~ -: ly

p fundamental in computer sc ience , did not 2~nd their way into lan guage:

until the 1960’s. Our languages today probably have too many feat ures,

but the languages up to FORTRAN I had. too few.

At the time our story leaves off , explosive growth in language

develo~ ment was about to take dccc , since the successful compiler s

touched. off a language boom. YrogrnscninJ languages had reached a stage

wh en people began to write t ranslator- :  from IT to FORTRAN [OR 58] arid.

from FORTRAN to IT (c Y . [30 58], who describes the FOR TRANSIT comp iler

which was developed by a group of programmers at IBM under the ddrectiori

of If . ~~. Bemer and 2- . Henries). An excellent survey of the ;:t at e of

automatic s~ro~ r anrasng at- the time -sas repared by R. W . Bemer [BE 57] .
ierhap : the most  :Lf ;Uifican t development then in the wind was the

international nr o~1ect attempting to define a “ standard” algorithmic

language. Just a f t e r  the 1955 acet ing in Darmstadt , a grour of

- -crol ean c omputer s cient I s t s  began to plan a new language (c: . [LE 55]
under the auspices of the Gesellschaft iI~r Angewandt e Nathematik und

Aechanik (di~~-~ -~, the Association for Applied I-iath-imat-ic: and 1--lechanics).

They later invited American sa rt ic iT  ct ion , and an ad. hoc ACM corrsltoee

chaired by Alan Pen is act several t imes beginning in January, 1956.

ioir g the summer of that year, -~iii - inh  was the site of a meeting attenoci

by repr -sentat ive:  of the American and European committee: : J. W. Tacky : ,

S • 1. lacer , ii .  Bottenb ruch, C. Hat :, A. T
• PerU: , - . Ruti :Lnu :er ,

and 3. H. ~eg:tein. ( S e e  [BB 58] 5 cr  th e language proposed

by the osroC ccc: delegate :  •)
It seem: S A tt in l :  to br ing our :— ~ cry t o a close by stat ing the TPK

alU-ciritbm Lr . the ‘ is:ternational Algeb raic Language” ( h i d , later called

ALGOL ) developed at ~~~~ f- 1 :6oric hu n ch meeting [13 58] :

95

- ~— 
— -—



¶ 
~~~~~

_AO 32 123 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE FIG 9/2
Tilt EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES.(1J)
AUG 76 0 E KNUTH. L T PARDO N0001’4 76 C 0330

IJN4..LASSIFIED STAN— CS—76—562 NL

2oF2
~ 2 L

U

U END
DATE

—77

procedure TPK (a[])

array (a[O:lo],b[O:21]);

comment given 11 input values a[O], .,a[lOJ, this procedure

produces 22 output values b[O}, . . .,b[21], according
to the classical TPK algorithm;

for i lO(-l)o;
begin y f(a{i]);

f(t) s~rt(abs(t)) +5 xtt~~;
if (y >).

~OO) ; y 999;
b[20-2xi] :=r i;

b[21-.2xiJ := y

end;

return;

~~teger (i)

end TFK

I


~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

References

[AB 571 R. Ash, E. Br~.adwin, V. Defla Valle, C. Kat z, M. Greene, A. Jenny,

and L. Yu, “Preliminary Manual for MA~~I-MATIC and. ARITH-MATIC

Systems (for Algebraic Translat ion and Compilation for UN IVAC I

and II),” (Philadelphia, Pa. : Remington Ran d Jnivac, 1957).

[AL 5~d Charles W. Adams and J. H. Laning, Jr., “The M.I.T. s , tem~ of

automatic coding: Comprehensive, Sunnner Session, and. Algebr aic , ”

Symposium on Automatic Progranm~ing for Digital Computers

(Washington, D.C. :  Offi ce of Naval Research, UeT t . of the Navy,

195)4), )4o-68. [ Although Laning is listed as co-author, he did

not write the paper or attend the conference; in fact, he stat~~
that he learned of hi~ “ - ‘~uthor2h~p” only ten or f if teen

years later: ]

[BA 5)4] J. W. Baclws, “The TF7~ 791 Speed d ing  ~y~tem,” J.ACM 1 ( 195)4),

[BA 581 J. W. Backus , “ Automat c pro~r in~ ir ~~: Properties and per i cr ~:ance

of FORTRAN ::/:ternc I aol i ,” Y1~ ii ~~~~ ion of Thought Froce. r,~~~
National Physical Taboratory ~yn j c s Y u r . No. l~, 1958 ( London :

Her Majesty ’ s ~t~t 1oner~’ (~ff ~~ e, 1)5?), 231-255.

[BA 59] J. W. Backun , “The syntax and semant ic~- of the proposed International

Algebraic Language of the :‘Uricb AC - GJT~l conference, ” Proc. m t .
Conf. Inf. Processing (Paris : Tr~77cO , 1959), 125-131.

[BA 611 Charles Babbage and his Calculat ng thgines, ed. by Philip

‘ 
Morrison and ~nily Morrison (New York: Dover , 19 1), mviii + )4OO

[BA 761 John Backu s, “Pr ograzrnninc~ in America in the ::ineteen Fi f t ie~’ - -

some personal ini~re~’sion c, ” Proc. International he~ earch Coo l.

on the Histor ~i 0y Comput i~~~ ( Los Alamos, 197~~) , to appear.

[BA 76 ’]  F. L. Bauer , letter to . B. K~iuth date.i July 7’, 197t ; 2 y ’ .

[BB 57] J. W. Back-us , ~ . ; . ~~~~~~~~~~ . .  Bes t , R. Gol ihory ,  L. Mitchell
}-Iaib t , !. . }~‘r r ~ rk .  R . ~ . ~eL ~n , . ~~~~~ ~. ~hi_ o i  ho~’
H. ~tc~rn, I. ::1i ~~r. R. . Hughe , and y~ bu t t . , “ inc FORTRAN

ci~~I ~ng ~Y5 r i - . ~~ tern J o i n t  (‘ omp. Con f . (195 7) ,

16~ -t ~7.



— “? ‘~~~~~“~~~~ ‘~~‘ 
~~~~~~ )•~~•! 

~~~~~~~~~~~~~~~~ ~ —“~--‘r ~~ ‘“ 
. t.-., ., —— .,—, ‘~“ ‘ r ~~’ , ”  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~

[BB 5l~] • L. Dauco , i . Botter ibruck~, H. Fu t i : h u u ~:ci , axi i K . on ,

“Proposal ~or a universal language for the i~~~~~~~ i j t iun c:•

comput ing processes, ” in Computer Progrunmir ig ~u u  Jr t i fic ial

Intelligence, ed. by John W. Carr , III ( Ann Arbor , Mich. :

thiversity of Michigan , College of Engineering, 1958), 553-57~5.
[Translation of original German draft dated May , 1958, in :ur ici : .]

[ C C  5) 4 ] Arthur W. Burks , I rv ing  N . Cop i , and Don \. ‘. C~~ro r :n , “ La ungt~. ~r

analysis of clerical problems , ” En gin eeri ng Resear ch In~ t i t u ’~e ,

Informal Memoran dum 5 ( Ann Arbor, Mich . : Univ. ol Ni chigan , L 5 H ) ,
• iii + 2)4 p~ .

• [s~ 37 ] K. K. Bemer , “The :tatur of automatic progr~siiming for sc i e nt l f C c

problems, ” Proc. )4th Annual Computer Applicat ion s Symposium,

Armour Research Foundation (1957), 107-117 .

~CG 53] J. N . Bennett and A. E. Glennie, “ Programming i’or high-speed di gital

calculating machines, ” in Faster Than Thought , e d .  by B. V. Bowden

(London : Pitman, 1953 ), 101-113.

~3H 5L } John C. Backu s and Harlan Herri cCc , “IBM 701 Speedcoding and other

automat ic-programming ~ynt enu , ” JympOSiUm on •alonn t~ C Progrann•in~
b r  Digital Computers (Washington , D.C. : Office of uaval i ’er earcL ,

Iep t.  of the Navy, 195)4), 106-113.
{BH 7L]  •C W. Backus and. W. P. Heising, “ FORTRAN, ” IEEE Trans. Llectrcnic

Comp. EC-l3 (196)4), 382-385 .
[CL 57] 7. K. Bluxn, “Automatic Digital Encoding System II ( ADES I I ) , ”

NAVORD Report )4209, Aeroballistic Research Kuport 32~ , U. F.
:;aval Ordn ance Laboratory (Feb ruary 8, 1956), v+) 45 pp. +

(2 + 1+7)  pp. of appendices.

~EL 56’] ~~. K. Blum, “ Automatic Digital Encoding System, H , ” (‘ympo~~iur ~ on

Advanced Programming Methods for Digital Computer~ , W a s h in Ct o n .  D .C.

ONR Symposium Report ACR-15 ( l95 ~~) ,  7l- ’~~.

I C L  5~”}  K . K. Blum, “ Automatic Digital Encoding Cy st orn , i t  (An 1~s II ) , ”

Proc. ACM National Conference ( (1956), paper 7° , )4 pp.

~CL 57] ;.. K. Dli ’m , “ Automatic Digital Encoding System II ( ADES II~ ,

Part 2: The Encoder, ” NAVORD Report )4)4ll, U. H . Naval Urdsnu~ce

ahoratory ( ovember ~ ., l~i5’ ), 82 pp. + appendix.

[~~L 57 ’ ] H . K. Blum and done  torn , “An ADES Encoder for  ~hu 1DM 50

calculator, ” DA’P RD Report )4)4l2, ‘N H. Naval Ordn ance LaboraL~ry

(December 19, ] 1 5 u) ,  15 p .

98

-~~ ~~~~~~~~~~~~~~~~~~~~ - _



~~‘W ~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ 
~~~ J1’T 

~~~~~~~~~~ ~~~~~

‘— •

[BO 52] Corrado B~hm, “Calculatrices digitales: flu déchiffrage de

formules logico-mathématiques par la machine m&ne dans la

conception du programme” [Digital computers : On the deciphering

of logical-mathematical formulae by the machine itself during

the conception of the program], Annali di Matematica Pur a ed

Applicata (4) 37 (195)4), 175-217.
[BO 52’] Corrado Bb’hm, “Macchina calcolatrice digitale a programma con

programma preordinato f i n  so con t ast iera algebrica ridotta atta
a cornporre formule medi ante la combinazione dci singoli element i
simbolici” [Programmable digital computer with a fixed preset

program and with an algebraic keyboard able to compose formulae

by means of the coithination of single symbolic elements], lat ero

application N o. 13567, filed in Milan on October 1, 1952;
21 pp. ÷ 2 tables.

[BO 5) 4]  Corrado EV im, “ Sulla progr anmiazione mediante fonnul e ’ [On
progranmiing by means of formulas], Atti IH Sessione Giorn ’C e

Celia CioblSa , suppi. de “La ricerca scient ifica ” (Rome , l95)
~~,

[Ba 5~ ] ii. C. Cor don , “ FORTRANSIT, a universal automatic coding nysten , ”

~~nadian Conf, for Computing and Data Proc. (Toronto: U. of

Toronto  :nY~~~s , l95~~ , 2)49-~59.
[Dl 52] . N. C’oo ’ ’~ ~, 7. 1. 1 r~ n n , and N . I. Woods, “ Interpretative

sub-routines , ” I r an .  •2 CN National Conference 2 (Toronto, 1)52 ,

[BR 55] C. A. Crook o, “ An attem-n t to simplify coding for the Manchester

ol’~a lr o n i c  n )m3 ut ( •r , ’ Critish J. Ap~ 1. Physics 6 (1955), 307 - 11.
• [Thi s papur was reco1~~od in Car ob , 195)4.]

[BR 56] B. A. ilrookri r , “The i rorrr armC n~ :trate~~~un ed with the Manchester

Univer : i t , Na rk  1 usa ut~ r, 
“ Ir o n  • I • a. a. 103, part B, ou~~ lement

(i~ 5’ , 151-157.
[BR 581 B. o. Brooker , “The Autocode progr am s •ievoloped for the Manchester

‘kH vern i ty e’)m~ ite r ’ , “ ~~~~ . i . 1 (1059), 15— C l.
[BR 58’] a. A . T3rook r , “ Home technical features of the Manchester Nernury

AUTOCODE j r  rarr ’be , ” C: i i ’ c i . : a t  ~a 01’ Thought Processes ,
Nation al Physical Labor t 4 ’ r ,’ Symposium N c .  lH , 1958 (London :

• Her M a j e st y ’ s tat i onery 7 : 1  u~ 10593 , 201—23 °.



— - ‘ ‘ - • 
~ ‘ ‘~~ • • — ‘ 

‘~~~~~~~~~~~ ! - ~~~~~‘
‘ ~~~~~~~~~~~~~~~~~~ r~’ - 

~j~~~~~~~~~~~~T _rt.~
_r _ -_ ...’ ~~~~~~~~~~~~~~ 

7 V . , ’ W  ~~‘~~~~~w ” 1 ?  ‘ “V  ~~~~~~~~~~~~~~

[BR •.~o] B. A. Brooker, “MERCURY Autocode : Principles of the Program

Library, ” Ann. Rev, in Automatic Prog. 1 ( 1960), 93-110.
[CL ) 57]  Friedrich Ludwig Bauér and KLaus Samelson , “Verfahren zur

aut omatischen Verarbeitung von kodierten Daten und Rechenmasehine

zur Ausi~buzig des Verfahrens, ” Deutcches Patentamt , Auzlegesch2 C

1094019 (March 32 , 1957), published December, 1960; 26 ccl:. f lu:
6 Figs .

[~ s 62] Friedrich Ludwig Bauer and. KLaus Samelson, “Automatic computing

machines and method of operation,” United States Patent UI)ticc ,
• patent 7 , 3)47, 228 ( July 51, 1962); 32 cols. plus 17 Figs .

• [BU 10) 1 Arthur W. Burks, “ The logic of progr amming electronic di gital

:os auter : , ” Industrial Math. 1 (1950), 36-52.
[Cd 51] Arthur W. hark: , “ An intermediate program language as an aid in

• I r edram synthesis, ” Engineering Research Institute, Report for
Curreagh o Addi ng Machine Company ( Ann Arbor, Mich. : Univ. of
‘~~c:~~~~n , l951~ , i i + 15 pp.

[ 10w 53] ~~. H. Brooker and 9. J. Wheeler, “Floating operations on ’N:.

HDH A C , ’ Math. Tables and other aids to Computation 7 (1953), ‘

[ L W  ‘12] 1. L. Bauer and H. W’dssner , “The ‘PlankalkUl ’ of Konrad Llu :e:
A forerunner of today ’ s programming languages, ” Comm. DCC 15
( 1972), 678-~85.

[CE 3e’] AlLonzo Chur ch, ‘An unsolvuble problem of’ elementary number

theory, ” Amer . 3. Math. 58 (l~;~~~), 345 -363 .
l i E  So ]  J. Chi pp:, 1. Koschmann, 1). Orgel, A. Pen i s , and J. ~ ni Lh ,

“ A mathematical language compiler , ” Proc. ACM Nation al Cont . 6

• (1)51), paper 7 ’) , 4 pp.
[CL 1] ~~. F. ‘ ‘lCi~~1ngur , “FACT - A Business Compiler : Description sac

comparison with COBOL and Commercial Translator, ” Mn. Rev, in
Au t o .  Prog. 2 (1961), 231-292 .

• [ c ;  lr3 ] laskell B. carr ,,, “ On the composition of programs for aut omatic

c o s pu t i r i ), ” N av al Ordnance Laboratory Memorandum 9806 (Silver
;r i n g ,  Md., 1949); 52 pp. [Written in July, 1948.]

[CC 50] C B. “airy , ‘ A program composition technique as applied to inverse

~ ‘ r~ olati c r , ” Naval Ordnance Laboratory Memorandum 10337 ( Silver

• r 9~g, M i ., 1950);  98 pp. + 3 fi g:.

100



~~rr ~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~ “ ‘~~~ “ ~~~~~~~~~~~ ~~‘ ~~~ 
~ ~~~~~~~~~~

—“-
~~~~~ 

-

[Cii 50’] H. B. Curry, “The logic of program composition,” Applications

scientifigues de la logique mathématiqu,~ Actes du 2e Colloque

International d.c Logique Mathéxnat ique, 1952 (Paris: Gauthier-

• Villars, 1954), 97-102. [Paper written in March, 1950.)

[EK 55) A. Kenton Elsworth, Robert Kuhn, Leona Schloss, and Kenneth ~ieC~~,

“Manual for KOP~~ILEP 2,” Univ. of California Radiation Lab.,
Livermore, Calif ., report IJCRL-45 85 (November 7, 1955), 66

[ER 58] A. P. ~ ‘shov, Programmix~~~oshchai a Programma d.lia Byrtrodei~ tvc :hchei

Wlektronnoi Schetnol Mashiny (Moscow: Akad . Nauic 222K , 1958),
lie pp. English translation, Programming Programme for the 7KHM
Computer (London: Pergamon, 1959), v+158 pp.

[ER 58’] A. P. Ershov, “The work of the Computing Centre of the Academy

of Sciences of the USSR in the field of automatic programming,”

Mechanisation of Thought Processes, National Physical Laboratory
P Symposium Mc. 10, 1958 (London: Her Majesty’s Stationery Office,

1959), 257-278.
[FE 60] 0. E. Felton, “Assembly, interpretive and conversion prograss for

PEGASUS,” Ann. Rev, in Automatic Frog. 1 (1960), 32-57.
P [GL 52] A. E. Glennie, “The automatic coding of an electronic computer,”

unpublished lecture notes dated. Dec. 14, 1952; 15 pp. [This

lecture was delivered at Cambridge University in February, 175 ’.]
[GL 52’] A. E. Glennie, “Automatic Coding,” unpublished manuscript (uri dat ia ,

• probably 1952), 18 pp. [This appears to be a draft of a user ’ s

manual to be entitled “The routine AUTOCODE and its use.”]

[GL 65] Alick E. Glennie, letter to D. E. Knuth dated September 15~ 1915;

6 P ~~~ .

• [GO 54] Saul Gorn, “Planning un*versal semi-automatic coding,’ 2ym~ u :iu r . .

on Automatic Programming for Digital Computers (Washington, : .C. :

Office of Naval Research, Dept. of the Navy, 1954), 74-83.
[Go 561 Max Goldstein, “Computing at Los Alamos, Group T-1,’ L’ympo ium on

• Advanced Progran~ning Methods for ~igital Computers, Washin gton , . C.,

aMP l ymposium Report ACR-15 (195), 59-)4 .
[Go 571 ‘cud Gorn, “Standardized programming methods and un iversal

coding,” ~~. ACM 1~ (1957), 254-273.

• [Go 72] Herm an I. Goldatine, The Co~~pter from Pascal to von Neuman n

(Pr C r L r ~1 en , N. J. : PrInceton l n i ver s ity Pres s , 1772), xi + ~
‘
~
‘) n~

.

101 6


~~~~~ ‘
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

- ‘  
~~~~~

‘—
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘
~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~

[GP 56] Mandalay Grems and R. K. Porter, “A truly automatic computing

system,” Proc. Western Joint Computer Conf. (1956), 10-21.

[GB 581 Robert M. Graham, “Translation between algebraic coding languages,”

Proc. ACM National Conf. 8 (1958), paper 29, 2 pp.

lay 47] Herman H. Goldstine and John von Neumann, Planning and Coding

of Problems for an Electronic Computing Instrument: Report on
the Mathematical and Logical Aspects of an Electronic Computing

Instrument (Princeton, N.J.: The Institute for Advanced Study,

1947-1948). Volume 1, iv + 6 9 pp. ; Volume 2, iv~~68 pp. ;

Volume 3, iii + 23 ci.. Reprinted in von Neumann ’ z Collected Works,

ed. by A. H. Taub, Vol. 5 (London: Pergamon , 19(5), 80-235 .

[H~ 52] itaff of the Computation Laboratory [Howard i i . AlDen and. 55
otMers], Description of a Maguetic Drum Calculator: The Annals

of the Computation Laboratory of Hax~ ard Universi~y 25 (Cambridge,

Ca::.: Harvard University Press, 1952), xi+318 pp.

[KA 57] C. N. I lemb l in , Computer languages, ” Australian J. cience si, 6

(December 1957), 155-17 .

[HM 53] drace M. lioli cer and John C. Mauch,ly, “ Influence of progr mmiing

techniques on the desigu of computers,’ Proc. I.R.E. 41 (1955),

1250-l25L.

[HO 52] Grace Murray Hopper, “The education of a computer,” Proc. ACM

National Conf. 1 (Pittsburgh, 1952), 243-250.

[HO 53) Grace Murray Hopper, “The education of a computer,” Symp. on

Industrial Appl. of Automatic Computing Equipment (Kansas City,

Mo.: Midwest Research Institute, 1953), 139-144.
[HO 57’] Grace M. Hopper, “Compiling routines,” Computers and Automation

1 , 4 (May , 1953), 1-5.

[HO 55] G. H. Hopper, “Automatic coding for digital computers,”

Computers and Automation 4, 9 (September 1955), 21-24.
[HO 54] Grace H. h opper, “The interlude 195 14~ 195 ! , “ Symposium on Advanced

Programming Methods for Digital Computers, Washington, D.C.,

ONR Symposium Report ACR-l5 (1s5), 1-2.

[HO 57) Grace N. Hopper, “Automatic programming for business applicati n:,”

Proc. 4th Annual Computer Applications Symposium, Armour Kesearch

Foundation (1957), 45-50.

• —
~~~~~~~~~~, •. _ _ _ _ _  ~~r



_____ -~~~~~~~-—‘ —- --

p

[HO 58] Grace Murray Hopper, “Automatic programming: present status

and future trends,” Mechanisation of Thou~~t Processes,
P National Physical Laboratory Symposium No. 10, 1958 (London:

Her Majesty t : Stationery Office, 1959), 155-200.

[HO 71] C. A. H. Hoare, “Proof of a program: FIND,” Comm. ACM 114

(1971), 79-45 .
P [lB 54] Programaing Research Grou , I.B.M. Applied Science Div.,

“Specif’icat~nr~s for The IBM Mathematical FO~nu.la TRANslating

yst en , FO1IIKAIS, ” Preliminary report (lIeu York: • C .11. 2cr~
1954), 1+29 pp.

[lB 56] 2. C. Hacku s, H. C. Beeber, 2. Best, R. Goldberg, N. L. Derrick,

C. A. Hughes, L. K. Mitchell, R. A. Nelson, C. Mutt, D. Say-r e,

1-. i~. Sheridan, H. Stern, I. :~iller, “Programmer ’s Reference

Manual : The FORTRAN Automatic Coding System for the iBM 71)4

e D}’ l, ” Applied Science Div. and Pr”gramining Research Dept.,

IBM (October 15, 1956), 51 PB.

[lB 57] Internatiori aS Business Machine Corporation, “Progr ammer ’ s

Primer for FORTRAN Automatic Coding System for the IBM 704

(1957), ±11+ 54 ju .

[KP~ 57] C’narles Eats, ‘ Systems of debugging automatic coding,” Automatic

Codin,~ Frcnklin Institute monograph no. 3 (1957), 17-27.

[haL 58] 2. 2. Eaminin , 5. 2. Lfubim skii, and M. R. Shura-Bura, “Ob

a~r~ cmati:a tsii prograimnirovaniia pri pomoshchi progralmTsLraioshchei

prcgr arargr , ” Problemy Kibernetiki 1 (1958), 155-171.
thglish translation, “Automatic programming wi th a progr amming

programme, ’ Problems of Cybernetics 1 (1960), L ‘-1 1.

[KM 57] Henry Kinzler and Perry H. Moskowit:, “The Procedure Translator --

a :y:teu of automatic programming,” Automatic Coding, Franklin

Institute monograph no. 3 (1957), 39-55.

[IC ; 64] Donald 5. ~~uth, “Backu: Normal Form vs. Backu: Maur Ker r:, ”

Comm. 122 1 7 (19 :4), 735-736.

[Kr; 68] Donald 5. Knut’ti , I’undamental Algorithms: The Art of Computer
Prograinmin~ 1 (Reading, Mass.: Addison-Wesley, 1° 5), ad. + (~ 14 

~
y.

[KT~ 49] Donald 5. E a O } !, ,t~minurnerica1 Algorithms : The Art of Computer
P Prograrmüng 2 (~C ing, sc • : Addi s i i— Wc: l oy ,  1960), xi + 5514 

11 .p



‘“  ~~~~~~~~ - —~~~ -—-~~~ ~~~~~~~~~~~~ ~. .  ~ - —— ~~‘-—‘..“~~~~ ‘- ~~~~~~‘~~~~— •

[to; 72] Donald 5. ~Liu~C, “Ancient Babylonian algorit~:i:,” Cuss:. DCC 15

(1972), ~7l- 77. Errat a in Comm. ACM 19 (1975 , 107..

[Ko 58] L. S. Korolev, “Some methods of automatic coding Cur BalM and
STR.ELA computers, ” in Computer Programming and Artificial
Intelligence, ed. by John W. Carr, III (Ann Arbor , Hick .:
Iihiversity of Michigan , College of E~ gineering, 1958), 489-507 .

[N A :5] 2. N. Lai~ing, letter to S. Knuth dated January 13, 19s5; 1 a.
[LA 76] J. C. Laming, letter to D. E. Knuth dated July 2, 117 ; 11 :~~ .

[L~ 55] N. Joachim Cehm ann, “Bemerlaingen zu.r Automatisierung Icr
ProgrmmafertiC,iutg fUr Rechenautomaten, ” Elektronische Rechers~u :chiees h
smu Ln formct: i onsverarbeitung - Electronic Digital Computers and

~~~ :.ns- !. t~ 1 ia’ocessing, proceedings of October, 11)55, conference

at ~~~~~~~~~ Iiach richtentechnische Fachberichte 14 (1955), ~~,. lL7

(including discussion).

I U 58] A. A. Liapunov, “0 logicheski lth slthema.kh programm, ’ Problemy
Klcernet ik i 1 (1958), 45_74. E~glish translation, “The logical

:5 ru~ tui’e [s ic] of programs,” Problems of Cybernetics 1 (15(0),

~~~ 70 ] J. i ’.Jeor0 e Laming and James S. Miller, “The MAC algebrai c
.::‘s.1-~~e, 1111’ Instrumentation Laboratory report R-68l

( , : ‘;~~~~:‘r’ 1970), 25 iT.
[s 5~1 J. S. Laming, Jr., and 1. Zierler, “A program for translation ui

nat}ematical equations for Whi rlwind I, ” Ehgineering memorandum
S—i 14 (M a ss .  Inst . of Technology : Instrumentation Laboratory,

Ct!1~~’V, i~ä4), v±21 IC.

[C .; 53] E. C . Hutch and S. CLII, “Conversion routines,” Automatic Digital

‘umI Ltatiun, Proc. of a symposium held at the sational Physical
Laboratory on March 25, 2 .., 27 & 28, 1955 (London : Her Majesty ’s

Stationery Office, 1954), 7 4 _ C r D ~

[Ca ~4] ij ora B. ‘le;’ r, “Compiler method of automatic progr~umning,”

Symposium on i~atomatic Programming for Digital Computers

(‘~1r:sh l. ngt on, .C. : Office of Naval Research , Dept . of the Savy ,
1954 : , 15-: :.

lob



-~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~

)

[NA 54] Navy Math ematical Computing Advisory Panel, Symposium on
Automatic Programming for Digital Computers (Washington , S.C. :
Office of Naval Rese ar ch , Dept. of the Navy, 195 14-), v + l 5 2 ~r .

[ OR 58] Sylvia Orgel, “ Purdue Compiler: General description? ’
(~~. Laluyutte, m d .: Purdue Research Foundation, 1958), J v + 5 3  I C .

[Ps 55] A. 3. Perli:, “ DATATR ON, ” transcript of lecture given August 11, 195 5;
in Digital Computers and Dat a Processors, ed. by John W. Car r

and. Norman R. Scott (Mn Arbor, Mich .: University of Mi chigan,
College of ~-igineering, 195.), Section VII.20.1, 5 i~~.

[FE 57] Richard H. Petersen, “Automatic coding at G . I . , ” Automatic

Coding, Franklin Institute monograph no. 3 (1957), 5-1
[ Fl: 55] ~. .t anley Poley and Grac e Mitchell, “ Symbolic Optimum Assenfly

Programming (SOAP), ” IBM Corporat ion, Sew York , (53 Progrankiag
Bulletin 1, Form 22-6285-1 (::ovember , 1955), 

~
[PR 55] Programming Research Section, Fekert Mauchly Division, Rendn~ tcn

imr~J, ‘ Automatic programming: The A-2 Compiler :.;:aexr~.”

Conv uters and Automation 4, 9 (September 1955), 25-29; 4, 10

(.ctobcr 1957), 15-27.

[II 57] Alsa J. Ferli~ and Joseph W. ~aith , “ A mathematical language

compiler,” Aut omat is Soling, Franklin institut e monogr aph no . 3

(1957), .77-102.

[Fc 57’] A. J. }‘:eJMi , •. .  C. SaSs), and 1. C . Van Zoeren, “ Internal

Translator (IT): A compiler for the . 50 , ” Computation Center,
Carnegie Institute of Je . l-a: .:lcgy ( March, 1957). Part C ,

C~-u gr~~~er ’s Guide, 47 pp. Part II, Program Onalysis, 68 ~~~~~

ASd o nda , 12 pr . (flow charts were promi sed on ~:.  3.12).
Reprinted in Applications of Logic to Advanced Digital 2 s:s’aC’

Progr amming (Ann Arbor, Mich.: University of Michigan, College

of Ekigineering, 1957). This report was also available from

IBM Corp. as a 650 Library Program; File Number 2.1.001.
[Autobiographical note: D. F . Knuth learned about system
progrmmning By reading the program listings of part II in the

cun~ner of 1957; this changed his lIt0 .]

P

1 ‘55
p 

~~~ , - - . - .-~~, ~~~~~ - . - ,,, , ,~~~. , — 
~~~~~~~~~~~



-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~ •,‘ ~~~~~~~~~~~~~

‘‘ ‘ ‘‘ ‘
~ ~~~~~~~~~~~~~~~~~~~~~~

[ps 58] A. J. Pen is and K. :;amelsori, “Prelininary report, International

Algebraic Language, ‘ Comm. ACM 1, 12 (December 1958), 3-22. Also
“Report on the Algorithmic Language ALGOL by the ACM Committee
on Programming Languages and the GANM Committee on Programming, ”
Nunier. Math. 1 (1959), 14i-~o. Also reprinted in Kxtn. aev. in

Automatic Programming 1 (1910), 219-290.

[RA 73] Brian R andell, The Origins of Digital Computers: Selected

Papers (Berlin: Springer, 1973), xvi + 4614 i~jp.
[RO 52] .5. Rochester, “Symb olic programming,” I.R.E. Trans. 30—B

(1952), 10-15.
[RO . 14] Saul Rosen, “Progr amming systems and languages, a historical

survey, ” Proc. Spring Joint Computer Conf. (1914), 1-1
[ER 53] Remington Rand, Inc., “The A-2 Compiler System Cmerati on:

r-:miaai” (November 15, 1955), iii + 54 pi . Prepared by

Richard K. Ridgway and Margaret N. Harper under the direction
of Grace C. Hopper.

[HR 55] Remington Rand UN IVAC, UNIVAC Short Code, unpublished collection

of dittoed notes. Preface by A. B. Tonik, dated Oct. 25, 1955
(1 page); preface by J. i~. Logan, undated but apparently from

1952 (1 page); “Preliminary Exposition” (1952?, 22 nag’:,

where pj~. 20-22 appear to be a later replacement); “Short Code

Supplementary Information, Topic One” (7 pp.); Addenda 1,2,3,4

(9 pp.).
[RU 52] Heinz Rutishauser, “Automatische Rechere lanfortigun g bei

programngesteuerten RechenmaschinexC’ [Automat is machine-code

generation on program-directed computers], Mitteilungen aus

dem Inst. fUr angew. Math, an der E. T .H. . $inich No. 3
(Basel : Birlthauser, 1952), ii + 45

[RU 55] Heinz Rutishaucer, ‘Some pro graim :r: : - t~. :h’4i quo: for the) ‘iiCN Ii i, ”

J. ACM 2 (1955), 1-14.

[RU 55’] Heinz Rutishauser, “ Hassnalmen sac Verein:ic1ung des Programmierens
(Bericht Uber die in fUnfj~hriger Prograimiierungsarbeit Slit der

zb gewonnenen Erfahrungen), ” Elektroni:che Rechenmaschinen und
Informationsverarbeitung

- Electronic D gita]. ~‘onputers and

Information Processing, proceedings of Oc . eC~~i , 1)5. conference

101

_ _—

~~~~~

__ _ _ _ _ _ _ _ _ _ _



_______

at . ‘o . ‘ . 51, Machrichtentecbnisch e Fachberichte 4 (i95 . ), 2° -i
SarL .I :N s a-oso y, “Methods to simplify programming, experiences
b~ :ed on five years of programming work with the z4 computer,”
p. 225.

[RU I t]  i , ’~s e i ’, letter to D. S. Knuth (Oct. II, 17i ),  2 p i .
[II 55~ ~üaus omel500, “ Iv solemu Jon Progranmiierurigstechai: ’:, ” Aktuelle

i r l i lcme der ReThen t ee’r_~’i ik ,  Ber. über das m t .  :iathemati her-
iis 1.i~~ uI ’ .s , iirecden , 195 5 (Berlin : SEN Deutcher Verlag der
Wi . ssen:chaften, 1957), ‘1- ’ 3.

[2A 69] Jean S. Faruoet , Progr azsad:’t3 Languages: H istory and FundamenssL:

(~~glewood 015205, N.J.: Tront ice-Hall, 14~y ’) , ~ocx + 785 r~~.
[SB 59] 3. Somelson F. 1. 3 . o r , “ Sc’querLtielle F :n:slUbersetssi ’.~ , U

.liektroal:c).e )‘~~~~~n~~ i- ’,:~r 1 (1959), 17 -i . 3 . Also “ 2e~ uential

formula trsamlation , ” Comm. iC~ ~ (1960: , ~ -Is, ILIl.

[ss 75] Leland ~~i t ) ,  “ Editing and cr Th~ in,~ music By como moer , ”

S. Music Theory 17 (177:), 292-335.
[S T 52] 0. 3. St rac’hep, “ingicait or non—mat h ematical rro p m e : ,

F~roc. sc:; Mati.~nal Son :’. 2 (Toronto , 1952) ,  L :_ 14~, .

[TA 56] 3. tamari ,  review of [BO 52],  Santralblatt für Llathematik

57 (1553), 107-108.

[ T A  60] Alan 3, Taylor , “The FLOR-MAT IC and MATM -ENLI IC Automatic

i rol~r7 103 Systems,” Ann. Rev, in Auto. Frog. 1 ( 1960), 19 -CC ”

[Oh 55] Frun o Thdnis~~, “Die IJLIrJAC A-2 Compiler Methode der autoniati:chen

Programmierung,” Fielctronische Rechenmaschinen unil

Inforrnationsv ’ ‘rarheitun g 
- 

Electronic Digital Computers and
Int uriant L on irr~~.:essin ,~~ pr oceedings of October, 1955, conference

at Dai~ rtadt , ‘Lachr ichtentechnische Fachberichte 14 (195 . ), Sri-li’

N 3 .“.Lmmr ry, p. 226.

[Tu ~6] ‘.. 3. Tiring, “On computable numbers, with an arplication to the

~h t :chei 3’inr ;I; rch1em, ” Proc. London Math. 3.oc. (2) 42 (193(1,

35r - ‘ S ;  s~ ’ rr~ cti on in vol . 143 (1937), 54i-546.

[WA 54] John Wmi~ e, “Editing generators,” symposium on Automa tic
‘5:r i~’ g: . t ’5  Computers (Washington , D. 3.: Office of

:;-~va~ he. ‘n I’:) , : ~~ . of LIiC Navy, 1954), 23-2° .

in”

__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -.



~~
‘ ,,. - - _ 

~~~~~~~~ 
,. ~~~~~~~~~~~ w,’-.,—-~-~~~r”~ & ‘~~~~~~~~~~~~ r’ ’ ‘~~“~“ s—’—~~” ‘—‘& ‘-

r ~~~~~~~~~~~~~~~~ .‘ - - - - . ‘ —~~~‘- - -

[s~ 58] F. Way III, “Current developments in computer programming
techniques,” Proc. 5th Annual Computer Applications Symposium,

Armour Research Foundition (1958), 125-132.
[wH 50] D. J. Wheeler , “ Programme organization and initial order : for

the EDSAC , ” Proc. Royal Soc. (A) 202 (1950), 573-519.
[Wi 52] M. V. Wi lkes , “ Pur e and applied progr amming, ” P 1 - . ASM ::ati onal

Conf. 2 (Toronto , 1952), 121-124.
[Ci 5,3] N. V. Wilkes, “The use of a ‘ floating addxe : s ’ system for orders

in an aut omat~ c digital computer , ” Proc. Cambri dg e Philos. Soc.

~s (1953), 814-99.
I WO 51] LI. Woodger , “ A comparison of one and three address coctes,”

Manchest :r University Computer Inaugural Conference (Manchester ,
1951), 19-23 .

[Ci: 71] W. A. Wu.lf , N. S. Russell, and A. N. Habermann, “ BLISS , a language
for systems programming, ” Comm. ACM 14 (1971), 780-790.

[CC 51] Maurice V. Wi lkes , David J . Wheeler and Stanley Gill, The
Preparation ~f I rog rams for an Electronic Digital Computer ,

with speciai re fere nce to the ELSAC and the use of a library of
subroutines (Ca mb ridg e, Mass. : Addi son-Wesley Press , 1951),
x i + 170 pp.

[ww 57] Maurice V. ;,‘Slkes , Davi d J . Wheeler , and Stanley Gill, The

Pre par ation of Programs for an Electronic Digital Computer ,

second edition (Reading, Mass.: Addison-Wesley, 1957),
xii+23 8 pp.

[zu 1414] K. Zuse , “ Ans ’átze einer Theorie des ailgemeinen Rechnen s unter
besonderer Berück sichtigun g des Aussa genkaJicUls und dessen
Anwendung auf Relaisschaltungen. ” [Beginnings of a theo ry ci ’

calculat ion in general , considering in par sicular the propositi ona l
calculus and its application to relay circuits .] Manuscript
dated 1944; Chapter 1 has been published in Berichte der

Gesellschaft für Mathematik und Datenverarbeitun g, No. 35

(Bonn, 1972), part 1, 32 pp. English translation, No. 101

(Bonn, 1976), 7-20.

[zU 45] K. Zuse, “Der Plankalkiil,” manuscript prepared in 1945. Publi shed

4’ in Berichte der Gesellschaft fUr Mathematik und Datenverarbeitung ,

No. (3 (B onn, 1972), part 3, 285 pp. English translation of all

but pp. l7(-1% in No. 106 (Bonn, 1976), 4: -s414.

108

- .


~~~~~~~~~~~~~
-“-‘

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~~~~

‘
~~~

-
~~~~

~ ______ ~~~ ~~~—-- -“-“---- — ____________

[Zu 1~8] K. Zuse, “i3ber den ailgemeinen PlankalkUl als Nittel zur
Formulierung schematisch kombinativer Aufgaben, ” Archly der
Math. 1 (19148/149), 4141-4149.

[zu 59] K. Zuse, “Uber den PlankalkUl, ” Elektron. Rechenani. 1 (lç5~~),
68-71.

P [STJ 72] Konrad Zuse, “Konmientar zum PlankalkUl,” in Berichte der
Gesellsch aft für Mathematik und Datenverarbeitung , No. 63
(Bonn, 1972), part 2, 36 pp. English translation, Ho. lO T

(Bonn , 1976), 21-~1.
- P

‘V

109

&
‘ .- —~‘--—---- -‘ —-. — — , — ‘ -a—- ~~~~~~~~~~~~ - - ‘. “ - ‘ ‘

_
~,,~~~ ,. . tw w.r’. .f l r V’ ”F - , .,... . “ ‘~~ ‘ ‘ “ - , ‘ -

—- ‘

-

~~~~~~

unclassified
SE C U R I -r y CLASS IFICATION OF THIS PAGE (When Data Pr~iered) -

REPORT DOCUMENTATION PAGE 
- 

BEF ORE COMPLET I NG FORM
I a~~~ORT N U M B ~~R . . 2 GOVT ACCESSION NO. 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~ 
STAN-CS-76-562 

~~~~~ 
/ t’i .1.”t’ (

~~~4. TITL E (~~d Sub1lIle) 5. YPE .OF R~~POR1’ & PERIOD COV RED 

~ARLY DEV iiLOPLII:N T OF PROGRAMMING techriical,August 1976

LANGUAGE S 4 ’ L.” 
6 PERFORMING ORG. REPORT NUMBER

__________________________________________________ STAN-CS-76-562 ‘ 
-

7. ,AUT I’IOR(s) 5 CONTRACT OR GRANT Nw. ~ R(s)

Donald L . ’Knuth ~ NOOO 14-7U-c-O~ s0, _ —~~~~~~

Luis Trabb ,1Pardo ~~~~~~

‘ 
— ‘ ,, .• , r .,—‘

/ 

~~~~~~~~~9. P E R F O R M I N G  O R G A N I ZA T I O N  N A M E  A N D  ADDRESS 10. P R O G R A M  ELEMENT. ~ ROJECT , T A S K

- . A R E A & WORK UNIT ~1UMBE RS
Stanford ‘niversity __-1 -

‘

Computer Science Department
3:anford , California 914305 _____________________________

I I CO N T R O L L I N G OFF ICE NAME AND ADDRESS ,t2., REPORT I~~E

315 Representative: Philip Surra jj-’Aug~~~~~~76
Durand Aeronautics Bldg, Rm. 165 T3. N U M 8 E R OW P A C t S ,—~~. . .

Stanford University, Stanford, Ca. 94305 109 - / ~~

‘

~~~ 
e

14 M O N I T O R I N G  AGEN CY NAME & A ODRESS(I f  different from Controlling Office) IS .  SECURITY ~ [‘A ’is . (ml- —

Unclassified
ISa , D E C L A S S I F I C A T I O N  ‘ DOWNGRADING

SCHEDULE

IS. D ISTRIBUTI ON S T A T E M E N T  (of this Reporl)

Releasable without limitations on dissemination

~7• D ISTRIBUT ION STAT EMENT (of Ihe abstract entered In Block 20, If different from Report)

IS. S U P P L E M E N T A R Y  NOT ES

19, KEY WOR DS (Conlinue on reverse side if necessary and identify by block number)

general (miscellaneous)
programming systems and languages

20 , A B S T R A CT (Confinue on reverse side if necessary and identify by block number)

This paper surveys the evolution of “high level” programming languages
during the first decade of computer programming activity. We discuss the
contributions of Zuse (“Plankalktil” , 1945), Goldstine/von Neumann (“Flow
Diagrams”, 1946), Curry (“Composition”, 1948), Mauchly et al. (“Short Code”,
1950), Burks (“Intermediate PL”, 1950), Rutishauser (1951), B~hm (1951),
Glennie (“AuTOCODE”, 1952), Hopper et al. (“A-2 ”, 1953), Laning/Zierler

DD ~~~~ 1473 EOITION OF ‘ Nov 65 IS OBSOLETE unclassified ~~ ~j~’ t/. / -
~~~

SECURITY CLASSI FICATION OF THIS PAGE jWPi.n DaIa Entar Ø.
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
. .



- ~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ‘-,,~
,_

~~~~~
-
~•‘

,-,—-,s~~~~ ‘-~~~ ——-~~~ ‘ — -.-— -- -‘-
__

~~~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “
~ ~~~~ ~~~~~~~~

—
~~

F Unclassified
S E C U R I T Y CLASSIFICATION OF’~ ’ HIS P4 GE(IThen Date Entered)

(1953), BacKr~ et al. (“FoRTRAN ”, l954-1 I5’{), Sroo~er (“Hark I
Autocode ”, 1954), Kamynin/Liubirnskii (“r~n-5”, 19 5 4) , Ershov “~~~

“ , 1955)
Grems/Porter (“BA CAIC”, 1955), Elsworth et al. (“Kompiler 2”, 1955),
Blum (“ADE S”, 1956), Pen is et al. (“ii ”, 1956), Katz et al.
(“M ATH-MATIC ” , 1956-1958), Hopper et al. (“FLOw-NA’I’Ic”, 1l~c), Bauer/
Samelson (1956-1958). The principal features of each contribution
are illustrated; and for purposes of comparison, a particular fixed
algoriThm has been encoded (as far as possible) in each of the
languages. This research is based primarily on unpublished source
materials, and the authors hope that they have been able to compile
a fairly complete picture of the early developments in this area.

This article was commissioned by the Encyclopedia of Computer
Science and Technology, ed. by Jack Belzer, Albert U. Holzman, and
Allen Kent, and it is scheduled to appear in vol. 6 or vol. 7 of that
encyclopedia during 1977 .

L unclassified

$IC~~RiTY C~~*ilW ~~ &~~~~~~O, THIs PAGE(Whwi D~~. Jnter.d)
- _________

